1
|
Kaur A, Goyal B. In silico design and identification of new peptides for mitigating hIAPP aggregation in type 2 diabetes. J Biomol Struct Dyn 2023; 42:10006-10021. [PMID: 37691445 DOI: 10.1080/07391102.2023.2254411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
The aberrant misfolding and self-aggregation of human islet amyloid polypeptide (hIAPP or amylin) into cytotoxic aggregates are implicated in the pathogenesis of type 2 diabetes (T2D). Among various inhibitors, short peptides derived from the amyloidogenic regions of hIAPP have been employed as hIAPP aggregation inhibitors due to their low immunogenicity, biocompatibility, and high chemical diversity. Recently, hIAPP fragment HSSNN18-22 was identified as an amyloidogenic sequence and displayed higher antiproliferative activity to RIN-5F cells. Various hIAPP aggregation inhibitors have been designed by chemical modifications of the highly amyloidogenic sequence (NFGAIL) of hIAPP. In this work, a library of pentapeptides based on fragment HSSNN18-22 was designed and assessed for their efficacy in blocking hIAPP aggregation using an integrated computational screening approach. The binding free energy calculations by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method identified HSSQN and HSSNQ that bind to hIAPP monomer with a binding affinity of -21.25 ± 4.90 and -19.73 ± 3.10 kcal/mol, respectively, which is notably higher as compared to HSSNN (-11.90 ± 4.12 kcal/mol). The sampling of the non aggregation-prone helical conformation was notably increased from 23.5 ± 3.0 in the hIAPP monomer to 38.1 ± 3.6, and 33.8 ± 3.0% on the incorporation of HSSQN, and HSSNQ, respectively, which indicate reduced aggregation propensity of hIAPP monomer. The pentapeptides, HSSQN and HSSNQ, identified as hIAPP aggregation inhibitors in this work can be further conjugated with various metal chelating peptides to yield more efficacious and clinically relevant multifunctional modulators for targeting various pathological hallmarks of T2D.
Collapse
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
2
|
Understanding the mechanism of amylin aggregation: From identifying crucial segments to tracing dominant sequential events to modeling potential aggregation suppressors. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140866. [PMID: 36272537 DOI: 10.1016/j.bbapap.2022.140866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
One of the most abundant, prevailing, and life-threatening human diseases that are currently baffling the scientific community is type 2 diabetes (T2D). The self-association of human amylin has been implicated in the pathogenesis of T2D, though with an inconclusive understanding of the mechanism. Hence, we focused on the characterization of the conformational ensembles of all the species that are believed to define the structural polymorphism of the aggregation process - the functional monomeric, the initially self-associated oligomeric, and the structured protofibril - by employing near-equilibrium, non-equilibrium, and equilibrium atomistic simulations on the sporadic, two familial variants (S20G and G33R), and their proline-substituted forms (S20P and G33P). The dynamic near-equilibrium assays hint toward - the abundance of helical conformation in the monomeric state, the retainment of the helicity in the initial self-associated oligomeric phase pointing toward the existence of the helix-helix association mechanism, the difference in preference of specific segments to have definite secondary structural features, the phase-dependent variability in the dominance of specific segments and mutation sites, and the simultaneous presence of generic and unique features among various sequences. Furthermore, the non-equilibrium pulling assays exemplify a generic sequential unzipping mechanism of the protofibrils, however, the sequence-dependent uniqueness comes from the difference in location and magnitude of the control of a specific terminus. Importantly, the equilibrium thermodynamic assays efficiently rank order the potential of aggregability among sequences and consequently suggests the probability of designing effective aggregation suppressors against sporadic and familial amylin variants incorporating proline as the mutation.
Collapse
|
3
|
The thermodynamic and kinetic mechanisms of a Ganoderma lucidum proteoglycan inhibiting hIAPP amyloidosis. Biophys Chem 2021; 280:106702. [PMID: 34741991 DOI: 10.1016/j.bpc.2021.106702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Ganoderma lucidum is a valuable medicinal herbal which has been reported to prevent type 2 diabetes (T2D). A natural hyperbranched proteoglycan extracted from Ganoderma lucidum, namely, FYGL, has been demonstrated to inhibit the amyloidosis of human islet amyloid polypeptide (hIAPP) previously by our lab. However, the effective active components and the mechanisms of FYGL in inhibiting hIAPP amyloidosis are unknown. To identify the effective active components, different components from FYGL were isolated: the polysaccharide FYGL-1, the proteoglycans of FYGL-2 and FYGL-3. We further separated and sequenced the protein moieties of FYGL-2 and FYGL-3, namely, FYGL-2-P and FYGL-3-P, respectively, and compared their abilities to inhibit hIAPP amyloidosis, and systematically explored the inhibitory mechanisms by spectroscopy, microscopy and molecular dynamic simulation methods. Results showed that the protein moieties of FYGL played essential roles in inhibiting hIAPP amyloidosis. The strong, specific, and enthalpy-driven interaction by π-π stacking and electrostatic forces between hIAPP and FYGL-3-P dramatically inhibited hIAPP amyloidosis. These results suggested that FYGL-3-P had enormous potential to prevent hIAPP misfolding-induced diabetes and structurally helped researchers to seek or design inhibitors against polypeptide amyloidosis.
Collapse
|
4
|
Liu Y, Tao F, Miao S, Yang P. Controlling the Structure and Function of Protein Thin Films through Amyloid-like Aggregation. Acc Chem Res 2021; 54:3016-3027. [PMID: 34282883 DOI: 10.1021/acs.accounts.1c00231] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein thin films (PTFs) with tunable structure and function can offer multiple opportunities in various fields such as surface modification, biomaterials, packaging, optics, electronics, separation, energy, and environmental science. Although nature may offer a variety of examples of high-level control of structure and function, e.g., the S layer of cells, synthetic alternatives for large-area protein-based thin films with fine control over both biological function and material structure are a key challenge, especially when aiming for facile, low-cost, green, and large-scale preparation as well as a further extension of function, such as the encapsulation and release of functional building blocks.Therefore, regarding the structure and function of PTFs, we will first briefly comment on the problems associated with PTF fabrication, and then, regarding the basis of our long-term research on protein-based thin films, we will summarize the new strategies that we have developed in recent years to explore and control the structure and function of PTFs for frontier research and practical applications.Inspired by naturally occurring protein amyloid fibrillization, we proposed the amyloid-like protein aggregation strategy to assemble proteins into supramolecular 2D films with extremely large sizes and enduring interfacial adhesion stability. This approach opened a new window for PTF fabrication in which the spontaneous interfacial 2D aggregation of protein oligomers instead of traditional 1D protofibril elongation directs the assembly of proteins. As a result, the film morphology, thickness, porosity, and function can be tailored by simply tuning the interfacial aggregation pathways.We further modified amyloid-like protein aggregation to develop chemoselective reaction-induced protein aggregation (CRIPA). It is well known that chemoselective reactions have been employed for protein modification. However, the application of such reactions in PTF fabrication has been overlooked. We initiated this new strategy by employing thiol-disulfide exchange reactions. These reactions are chemoselective toward proteins containing specific disulfide bonds with high redox potentials, resulting in amyloid-like aggregation and thin film formation. Functional proteins with immunity to such reactions can be encapsulated in thin films and released on demand without a loss of activity, opening a new avenue for the development of functional PTFs and coatings.Finally, the resultant amyloid-inspired PTFs, as a new type of biomimetic materials, provide a good platform for integration with various biomedical functions. Here, the creation of bioactive surfaces on virtually arbitrary substrates by amyloid-like PTFs will be discussed, highlighting antimicrobial, antifouling, molecular separation, and interfacial biomineralization activities that exceed those of their native protein precursors and synthetic alternatives.
Collapse
Affiliation(s)
- Yongchun Liu
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Fei Tao
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shuting Miao
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Peng Yang
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
5
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
6
|
Magrì A, Tabbì G, Di Natale G, La Mendola D, Pietropaolo A, Zoroddu MA, Peana M, Rizzarelli E. Zinc Interactions with a Soluble Mutated Rat Amylin to Mimic Whole Human Amylin: An Experimental and Simulation Approach to Understand Stoichiometry, Speciation and Coordination of the Metal Complexes. Chemistry 2020; 26:13072-13084. [DOI: 10.1002/chem.202002114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Giovanni Tabbì
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Giuseppe Di Natale
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Diego La Mendola
- Dipartimento di Farmacia Università di Pisa Via Bonanno Pisano, 6 56126 Pisa Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei, Metalli nei Sistemi Biologici (CIRCMSB) Via Celso Ulpiani 27 70126 Bari Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute Università “Magna Graecia” di Catanzaro Campus Universitario, Viale Europa 88100 Catanzaro Italy
| | | | - Massimiliano Peana
- Dipartimento di Chimica e Farmacia University of Sassari Via Vienna 2 07100 Sassari Italy
| | - Enrico Rizzarelli
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei, Metalli nei Sistemi Biologici (CIRCMSB) Via Celso Ulpiani 27 70126 Bari Italy
- Dipartimento di Scienze Chimiche Università degli Studi di Catania Viale A. Doria 6 95125 Catania Italy
| |
Collapse
|
7
|
Sahoo BR, Cox SJ, Ramamoorthy A. High-resolution probing of early events in amyloid-β aggregation related to Alzheimer's disease. Chem Commun (Camb) 2020; 56:4627-4639. [PMID: 32300761 PMCID: PMC7254607 DOI: 10.1039/d0cc01551b] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Alzheimer's disease (AD), soluble oligomers of amyloid-β (Aβ) are emerging as a crucial entity in driving disease progression as compared to insoluble amyloid deposits. The lacuna in establishing the structure to function relationship for Aβ oligomers prevents the development of an effective treatment for AD. While the transient and heterogeneous properties of Aβ oligomers impose many challenges for structural investigation, an effective use of a combination of NMR techniques has successfully identified and characterized them at atomic-resolution. Here, we review the successful utilization of solution and solid-state NMR techniques to probe the aggregation and structures of small and large oligomers of Aβ. Biophysical studies utilizing the commonly used solution and 19F based NMR experiments to identify the formation of small size early intermediates and to obtain their structures, and dock-lock mechanism of fiber growth at atomic-resolution are discussed. In addition, the use of proton-detected magic angle spinning (MAS) solid-state NMR experiments to obtain high-resolution insights into the aggregation pathways and structures of large oligomers and other aggregates is also presented. We expect these NMR based studies to be valuable for real-time monitoring of the depletion of monomers and the formation of toxic oligomers and high-order aggregates under a variety of conditions, and to solve the high-resolution structures of small and large size oligomers for most amyloid proteins, and therefore to develop inhibitors and drugs.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics Program, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | |
Collapse
|
8
|
Lam YPY, Wootton CA, Hands-Portman I, Wei J, Chiu CKC, Romero-Canelon I, Lermyte F, Barrow MP, O'Connor PB. Determination of the Aggregate Binding Site of Amyloid Protofibrils Using Electron Capture Dissociation Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:267-276. [PMID: 31922736 DOI: 10.1021/jasms.9b00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amyloid fibril formation is a hallmark in a range of human diseases. Analysis of the molecular details of amyloid aggregation, however, is limited by the difficulties in solubilizing, separating, and identifying the aggregated biomolecules. Additional labeling or protein modification is required in many current analytical techniques in order to provide molecular details of amyloid protein aggregation, but these modifications may result in protein structure disruption. Herein, ultrahigh resolution mass spectrometry (MS) with electron capture dissociation tandem MS (ECD MS/MS) has been applied to monitor the formation of early oligomers of human islet amyloid polypeptide (hIAPP), which aggregate rapidly in the pancreas of type II diabetes (T2D) patients. ECD MS/MS results show the aggregation region of the early oligomers is at the Ser-28/Ser-29 residue of a hIAPP unit and at the Asn-35 residue of another hIAPP unit near the C-terminus in the gas phase. These data contribute to the understanding of the binding site between hIAPP units which may help for specific target region therapeutic development in the future. Furthermore, MS has also been applied to quantify the amount of soluble amyloid protein remaining in the incubated solutions, which can be used to estimate the aggregation rate of amyloid protein during incubation (28 days). These data are further correlated with the results obtained using fluorescence spectroscopy and transmission electron microscopy (TEM) to generate a general overview of amyloid protein aggregation. The methods demonstrated in this article not only explore the aggregation site of hIAPP down to an amino acid residue level, but are also applicable to many amyloid protein aggregation studies.
Collapse
Affiliation(s)
- Yuko P Y Lam
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Christopher A Wootton
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Ian Hands-Portman
- Department of Life Sciences, Gibbet Hill Campus , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Juan Wei
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Cookson K C Chiu
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - I Romero-Canelon
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
- School of Pharmacy , University of Birmingham , Edgbaston , Birmingham B15 2TT , United Kingdom
| | - Frederik Lermyte
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Mark P Barrow
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Peter B O'Connor
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| |
Collapse
|
9
|
Levine ZA, Teranishi K, Okada AK, Langen R, Shea JE. The Mitochondrial Peptide Humanin Targets but Does Not Denature Amyloid Oligomers in Type II Diabetes. J Am Chem Soc 2019; 141:14168-14179. [DOI: 10.1021/jacs.9b04995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | | | | | |
Collapse
|
10
|
Beck Erlach M, Kalbitzer HR, Winter R, Kremer W. The pressure and temperature perturbation approach reveals a whole variety of conformational substates of amyloidogenic hIAPP monitored by 2D NMR spectroscopy. Biophys Chem 2019; 254:106239. [PMID: 31442763 DOI: 10.1016/j.bpc.2019.106239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 11/15/2022]
Abstract
The intrinsically disordered human islet amyloid polypeptide (hIAPP) is a 37 amino acid peptide hormone that is secreted by pancreatic beta cells along with glucagon and insulin. The glucose metabolism of humans is regulated by a balanced ratio of insulin and hIAPP. The disturbance of this balance can result in the development of type-2 diabetes mellitus (T2DM), whose pathogeny is associated by self-assembly induced aggregation and amyloid deposits of hIAPP into nanofibrils. Here, we report pressure- and temperature-induced changes of NMR chemical shifts of monomeric hIAPP in bulk solution to elucidate the contribution of conformational substates in a residue-specific manner in their role as molecular determinants for the initial self-assembly. The comparison with a similar peptide, the Alzheimer peptide Aβ(1-40), which is leading to self-assembly induced aggregation and amyloid deposits as well, reveals that in both peptides highly homologous areas exist (Q10-L16 and N21-L27 in hIAPP and Q15-A21 and S26-I32 in Aβ). The N-terminal area of hIAPP around amino acid residues 3-20 displays large differences in pressure sensitivity compared to Aβ, pinpointing to a different structural ensemble in this sequence element which is of helical origin in hIAPP. Knowledge of the structural nature of the highly amyloidogenic hIAPP and the differences with respect to the conformational ensemble of Aβ(1-40) will help to identify molecular determinants of self-assembly as well as cross-seeded assembly initiated aggregation and help facilitate the rational design of drugs for therapeutic use.
Collapse
Affiliation(s)
- Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry, Center for Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Hans Robert Kalbitzer
- Institute of Biophysics and Physical Biochemistry, Center for Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Roland Winter
- Physical Chemistry I- Biophysical Chemistry, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, Center for Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
11
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Rawat A, Maity BK, Chandra B, Maiti S. Aggregation-induced conformation changes dictate islet amyloid polypeptide (IAPP) membrane affinity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1734-1740. [DOI: 10.1016/j.bbamem.2018.03.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/30/2022]
|
13
|
Camilles M, Link S, Balbach J, Saalwächter K, Krushelnitsky A. Quantitative NMR study of heat-induced aggregation of eye-lens crystallin proteins under crowding conditions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:S1570-9639(18)30119-5. [PMID: 30071343 DOI: 10.1016/j.bbapap.2018.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/20/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
Abstract
The eye lens contains a highly concentrated, polydisperse mixture of crystallins, and a loss in transparency during cataract formation is attributed to the aggregation of these proteins. Most biochemical and biophysical studies of crystallins have been performed in diluted samples because of various physical limitations of the respective method at physiological concentrations of up to 200-400 mg/mL. We introduce a straightforward proton NMR transverse relaxometry method to quantify simultaneously proteins in the dissolved and aggregated states at these elevated concentrations, because these states significantly differ in their transverse relaxation properties. The key feature of this method is a direct observation of the protein signal in a wide range of relaxation delays, from few microseconds up to few hundred milliseconds. We applied this method to follow heat-induced aggregation of bovine α- and γB-crystallin between 60 and 200 mg/mL. We find that at 60 °C, a temperature where both crystallins still comprise a native tertiary structure, γB-crystallin aggregated at these high protein concentrations with a time constant of about 30-40 h. α-crystallin remained soluble at 60 mg/mL but formed a transparent gel at 200 mg/mL. This quantitative NMR method can be applied to investigations of other proteins and their mixtures under various aggregation conditions.
Collapse
Affiliation(s)
- Maria Camilles
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Susanne Link
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jochen Balbach
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kay Saalwächter
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Alexey Krushelnitsky
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany.
| |
Collapse
|
14
|
Davies HA, Lee CF, Miller L, Liu LN, Madine J. Insights into the Origin of Distinct Medin Fibril Morphologies Induced by Incubation Conditions and Seeding. Int J Mol Sci 2018; 19:ijms19051357. [PMID: 29751581 PMCID: PMC5983645 DOI: 10.3390/ijms19051357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
Incubation conditions are an important factor to consider when studying protein aggregation in vitro. Here, we employed biophysical methods and atomic force microscopy to show that agitation dramatically alters the morphology of medin, an amyloid protein deposited in the aorta. Agitation reduces the lag time for fibrillation by ~18-fold, suggesting that the rate of fibril formation plays a key role in directing the protein packing arrangement within fibrils. Utilising preformed sonicated fibrils as seeds, we probed the role of seeding on medin fibrillation and revealed three distinct fibril morphologies, with biophysical modelling explaining the salient features of experimental observations. We showed that nucleation pathways to distinct fibril morphologies may be switched on and off depending on the properties of the seeding fibrils and growth conditions. These findings may impact on the development of amyloid-based biomaterials and enhance understanding of seeding as a pathological mechanism.
Collapse
Affiliation(s)
- Hannah A Davies
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| | - Leanne Miller
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK.
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Jillian Madine
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
15
|
Sengupta I, Bhate SH, Das R, Udgaonkar JB. Salt-Mediated Oligomerization of the Mouse Prion Protein Monitored by Real-Time NMR. J Mol Biol 2017; 429:1852-1872. [DOI: 10.1016/j.jmb.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
|
16
|
Zhu D, Gong G, Wang W, Du W. Disaggregation of human islet amyloid polypeptide fibril formation by ruthenium polypyridyl complexes. J Inorg Biochem 2017; 170:109-116. [DOI: 10.1016/j.jinorgbio.2017.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/21/2017] [Accepted: 02/09/2017] [Indexed: 11/16/2022]
|
17
|
Xu ZX, Ma GL, Zhang Q, Chen CH, He YM, Xu LH, Zhou GR, Li ZH, Yang HJ, Zhou P. Inhibitory Mechanism of Epigallocatechin Gallate on Fibrillation and Aggregation of Amidated Human Islet Amyloid Polypeptide. Chemphyschem 2017; 18:1611-1619. [PMID: 28297133 DOI: 10.1002/cphc.201700057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 01/06/2023]
Abstract
The abnormal fibrillation of human islet amyloid polypeptide (hIAPP) is associated with development of type II diabetes mellitus (T2DM). (-)-Epigallocatechin gallate (EGCG) can bind amyloid proteins to inhibit the fibrillation of these proteins. However, the mechanic detail of EGCG inhibiting amyloid formation is still unclear at the molecular level. In the present work, we sought to investigate the effect of EGCG on amidated hIAPP (hIAPP-NH2 ) fibrillation and aggregation by using spectroscopic and microscopic techniques, and also sought to gain insights into the interaction of EGCG and hIAPP22-27 by using spectroscopic experiments and quantum chemical calculations. ThT fluorescence, real-time NMR, and TEM studies demonstrated that EGCG inhibits the formation of hIAPP-NH2 fibrils, while promoting the formation of hIAPP-NH2 amorphous aggregates. Phenylalanine intrinsic fluorescence and NMR studies of the EGCG/hIAPP22-27 complex revealed three important binding sites including the A ring of EGCG, residue Phe23, and residue Ile26. DFT calculations identified the dominant binding structures of EGCG/Phe23 and EGCG/Ile26 complexes, named structure I and structure II, respectively. Our study demonstrates the inhibitory mechanism of EGCG on fibrillation and aggregation of hIAPP-NH2 in which EGCG interacts with hIAPP-NH2 through hydrogen bonding and π-π interactions between the A ring and residue Phe23 as well as hydrophobic interactions between the A ring and residue Ile26, which can thus inhibit the interpeptide interaction between hIAPP-NH2 monomers and finally inhibit fibrillation of hIAPP-NH2 . This study agrees with and reinforces previous studies and offers an intuitive explanation at both the atomic and molecular levels. Our findings may provide an invaluable reference for the future development of new drugs in the management of diabetes.
Collapse
Affiliation(s)
- Zhi-Xue Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China), Fax: (+86) 21-55664038
| | - Gong-Li Ma
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Qiang Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P. R. China
| | - Cong-Heng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China), Fax: (+86) 21-55664038
| | - Yan-Ming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P. R. China
| | - Li-Hui Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China), Fax: (+86) 21-55664038
| | - Guang-Rong Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China), Fax: (+86) 21-55664038
| | - Zhen-Hua Li
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Hong-Jie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P. R. China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China), Fax: (+86) 21-55664038
| |
Collapse
|
18
|
Oxidative Stress Alters the Morphology and Toxicity of Aortic Medial Amyloid. Biophys J 2016; 109:2363-70. [PMID: 26636947 PMCID: PMC4675884 DOI: 10.1016/j.bpj.2015.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/18/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022] Open
Abstract
The aggregation and fibril deposition of amyloid proteins have been implicated in a range of neurodegenerative and vascular diseases, and yet the underlying molecular mechanisms are poorly understood. Here, we use a combination of cell-based assays, biophysical analysis, and atomic force microscopy to investigate the potential involvement of oxidative stress in aortic medial amyloid (AMA) pathogenesis and deposition. We show that medin, the main constituent of AMA, can induce an environment rich in oxidative species, increasing superoxide and reducing bioavailable nitric oxide in human cells. We investigate the role that this oxidative environment may play in altering the aggregation process of medin and identify potential posttranslational modification sites where site-specific modification and interaction can be unambiguously demonstrated. In an oxidizing environment, medin is nitrated at tyrosine and tryptophan residues, with resultant effects on morphology that lead to longer fibrils with increased toxicity. This provides further motivation to investigate the role of oxidative stress in AMA pathogenicity.
Collapse
|
19
|
Erlach MB, Kalbitzer HR, Winter R, Kremer W. Conformational Substates of Amyloidogenic hIAPP Revealed by High Pressure NMR Spectroscopy. ChemistrySelect 2016. [DOI: 10.1002/slct.201600381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Markus Beck Erlach
- Institut für Biophysik und Physikalische Biochemie und Zentrum für Magnetische Resonanz in Chemie und Biomedizin; Universität Regensburg; Universitätsstr. 31 93053 Regensburg Germany, Fax: (+49-941-9432479
| | - Hans Robert Kalbitzer
- Institut für Biophysik und Physikalische Biochemie und Zentrum für Magnetische Resonanz in Chemie und Biomedizin; Universität Regensburg; Universitätsstr. 31 93053 Regensburg Germany, Fax: (+49-941-9432479
| | - Roland Winter
- Physikalische Chemie I- Biophysikalische Chemie; Technische Universität Dortmund; Otto-Hahn-Str. 4a 44227 Dortmund Germany
| | - Werner Kremer
- Institut für Biophysik und Physikalische Biochemie und Zentrum für Magnetische Resonanz in Chemie und Biomedizin; Universität Regensburg; Universitätsstr. 31 93053 Regensburg Germany, Fax: (+49-941-9432479
| |
Collapse
|
20
|
Fortin JS, Benoit-Biancamano MO. Inhibition of islet amyloid polypeptide aggregation and associated cytotoxicity by nonsteroidal anti-inflammatory drugs. Can J Physiol Pharmacol 2016; 94:35-48. [DOI: 10.1139/cjpp-2015-0117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) constitute an important pharmacotherapeutic class that, over the past decade, have expanded in application to a panoply of medical conditions. They have been tested for neurodegenerative diseases such as Alzheimer’s to reduce inflammation and also in the attempt to abrogate amyloid deposition. However, the use of NSAIDs as aggregation inhibitors has not been extensively studied in pancreatic amyloid deposition. Pancreatic amyloidosis involves the misfolding of islet amyloid polypeptide (IAPP) and contributes to the progression of type-2 diabetes in humans and felines. To ascertain their antiamyloidogenic activity, several NSAIDs were tested using fluorometric thioflavin-T assays, circular dichroism, photo-induced cross-linking assays, and cell culture. Celecoxib, diclofenac, indomethacin, meloxicam, niflumic acid, nimesulide, phenylbutazone, piroxicam, sulindac, and tenoxicam reduced fibrillization at a molar ratio of 1:10. The circular dichroism spectra of diclofenac, piroxicam, and sulindac showed characteristic spectral signatures found in predominantly α-helical structures. The oligomerization of human IAPP was abrogated with diclofenac and sulindac at a molar ratio of 1:5. The cytotoxic effects of pre-incubated human IAPP on cultured INS-1 cells were noticeably reduced in the presence of diclofenac, meloxicam, phenylbutazone, sulindac, and tenoxicam at a molar ratio of 1:10. Our results demonstrate that NSAIDs can provide chemical scaffolds to generate new and promising antiamyloidogenic agents that can be used alone or as a coadjuvant therapy.
Collapse
Affiliation(s)
- Jessica S. Fortin
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Odile Benoit-Biancamano
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
21
|
Xu ZX, Zhang Q, Ma GL, Chen CH, He YM, Xu LH, Zhang Y, Zhou GR, Li ZH, Yang HJ, Zhou P. Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide. J Diabetes Res 2016; 2016:1867059. [PMID: 28074190 PMCID: PMC5198260 DOI: 10.1155/2016/1867059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022] Open
Abstract
The abnormal fibrillation of human islet amyloid polypeptide (hIAPP) has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (-)-epigallocatechin gallate (EGCG) is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III)/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III) and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III) and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III) could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III)/EGCG complex in molar ratio of 1 : 1 as Al(EGCG)(H2O)2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes.
Collapse
Affiliation(s)
- Zhi-Xue Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qiang Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Gong-Li Ma
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cong-Heng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yan-Ming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Li-Hui Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuan Zhang
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Guang-Rong Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhen-Hua Li
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hong-Jie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- *Hong-Jie Yang: and
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- *Ping Zhou:
| |
Collapse
|
22
|
Louros NN, Tsiolaki PL, Zompra AA, Pappa EV, Magafa V, Pairas G, Cordopatis P, Cheimonidou C, Trougakos IP, Iconomidou VA, Hamodrakas SJ. Structural studies and cytotoxicity assays of “aggregation-prone” IAPP8-16and its non-amyloidogenic variants suggest its important role in fibrillogenesis and cytotoxicity of human amylin. Biopolymers 2015; 104:196-205. [DOI: 10.1002/bip.22650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/10/2015] [Accepted: 03/30/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Nikolaos N. Louros
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Paraskevi L. Tsiolaki
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | | | - Eleni V. Pappa
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - Vassiliki Magafa
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - George Pairas
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - Paul Cordopatis
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - Christina Cheimonidou
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Vassiliki A. Iconomidou
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Stavros J. Hamodrakas
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| |
Collapse
|
23
|
Brender JR, Krishnamoorthy J, Sciacca MFM, Vivekanandan S, D’Urso L, Chen J, La Rosa C, Ramamoorthy A. Probing the sources of the apparent irreproducibility of amyloid formation: drastic changes in kinetics and a switch in mechanism due to micellelike oligomer formation at critical concentrations of IAPP. J Phys Chem B 2015; 119:2886-96. [PMID: 25645610 PMCID: PMC11444341 DOI: 10.1021/jp511758w] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aggregation of amyloidogenic proteins is infamous for being highly chaotic, with small variations in conditions sometimes leading to large changes in aggregation rates. Using the amyloidogenic protein IAPP (islet amyloid polypeptide protein, also known as amylin) as an example, we show that a part of this phenomenon may be related to the formation of micellelike oligomers at specific critical concentrations and temperatures. We show that pyrene fluorescence can sensitively detect micellelike oligomer formation by IAPP and discriminate between micellelike oligomers from fibers and monomers, making pyrene one of the few chemical probes specific to a prefibrillar oligomer. We further show that oligomers of this type reversibly form at critical concentrations in the low micromolar range and at specific critical temperatures. Micellelike oligomer formation has several consequences for amyloid formation by IAPP. First, the kinetics of fiber formation increase substantially as the critical concentration is approached but are nearly independent of concentration below it, suggesting a direct role for the oligomers in fiber formation. Second, the critical concentration is strongly correlated with the propensity to form amyloid: higher critical concentrations are observed for both IAPP variants with lower amyloidogenicity and for native IAPP at acidic pH in which aggregation is greatly slowed. Furthermore, using the DEST NMR technique, we show that the pathway of amyloid formation switches as the critical point is approached, with self-interactions primarily near the N-terminus below the critical temperature and near the central region above the critical temperature, reconciling two apparently conflicting views of the initiation of IAPP aggregation.
Collapse
Affiliation(s)
| | | | - Michele F. M. Sciacca
- Biophysics, University of Michigan, Ann Arbor, Michigan
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | | - Luisa D’Urso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Jennifer Chen
- Biophysics, University of Michigan, Ann Arbor, Michigan
| | - Carmelo La Rosa
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | |
Collapse
|
24
|
Rodriguez Camargo DC, Tripsianes K, Kapp TG, Mendes J, Schubert J, Cordes B, Reif B. Cloning, expression and purification of the human Islet Amyloid Polypeptide (hIAPP) from Escherichia coli. Protein Expr Purif 2015; 106:49-56. [DOI: 10.1016/j.pep.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
|
25
|
Gao M, Winter R. The Effects of Lipid Membranes, Crowding and Osmolytes on the Aggregation, and Fibrillation Propensity of Human IAPP. J Diabetes Res 2015; 2015:849017. [PMID: 26582333 PMCID: PMC4637101 DOI: 10.1155/2015/849017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/16/2015] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an age-related and metabolic disease. Its development is hallmarked, among others, by the dysfunction and degeneration of β-cells of the pancreatic islets of Langerhans. The major pathological characteristic thereby is the formation of extracellular amyloid deposits consisting of the islet amyloid polypeptide (IAPP). The process of human IAPP (hIAPP) self-association, and the intermediate structures formed as well as the interaction of hIAPP with membrane systems seem to be, at least to a major extent, responsible for the cytotoxicity. Here we present a summary and comparison of the amyloidogenic propensities of hIAPP in bulk solution and in the presence of various neutral and charged lipid bilayer systems as well as biological membranes. We also discuss the cellular effects of macromolecular crowding and osmolytes on the aggregation pathway of hIAPP. Understanding the influence of different cellular factors on hIAPP aggregation will provide more insight into the onset of T2DM and help to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Street 6, 44227 Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Street 6, 44227 Dortmund, Germany
- *Roland Winter:
| |
Collapse
|
26
|
Patel HR, Pithadia AS, Brender JR, Fierke CA, Ramamoorthy A. In Search of Aggregation Pathways of IAPP and Other Amyloidogenic Proteins: Finding Answers through NMR Spectroscopy. J Phys Chem Lett 2014; 5:1864-1870. [PMID: 26273866 DOI: 10.1021/jz5001775] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The deposition of aggregates of human islet amyloid peptide (hIAPP) has been correlated with the death of insulin-producing beta (β) cells in type II diabetes mellitus. The actual molecular mechanism of cell death remains unknown; however, it has been postulated that the process of aggregation and amyloid fibril growth from monomeric hIAPP is closely involved. Intermediate IAPP aggregates are highly toxic to islet cells, but lack of structural knowledge of these oligomers and complications in applying biophysical techniques to their study have been the main obstacles in designing structure-based therapeutics. Furthermore, the involvement of metal ions (Cu(2+) and Zn(2+)) associated with hIAPP has demonstrated an effect on the aggregation pathway. In the absence of well-defined targets, research attempting to attenuate amyloid-linked toxicity has been substantially slowed. Therefore, obtaining high-resolution structural insights on these intermediates through NMR techniques can provide information on preventing IAPP aggregation. In this Perspective, a review of avenues to obtain fundamental new insights into the aggregation pathway of IAPP and other amyloidogenic proteins through NMR and other techniques is presented.
Collapse
Affiliation(s)
- Hiren R Patel
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Amit S Pithadia
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeffrey R Brender
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Carol A Fierke
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Miller C, Zerze GH, Mittal J. Molecular simulations indicate marked differences in the structure of amylin mutants, correlated with known aggregation propensity. J Phys Chem B 2013; 117:16066-75. [PMID: 24245879 DOI: 10.1021/jp409755y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human islet amyloid polypeptide (hIAPP), a 37-residue protein cosecreted with insulin by β-cells in the pancreas, is known to form amyloid fibrils in type II diabetes patients. This fibril formation is also associated with β-cell death. However, rat IAPP (rIAPP) does not aggregate into fibrils, nor is it associated with β-cell toxicity. Determining solution properties of hIAPP experimentally is difficult because it aggregates quickly. Our study uses molecular dynamics simulation to explore and compare in-solution characteristics of hIAPP and rIAPP, as well as two single-point hIAPP mutants, hIAPP I26P and hIAPP S20G, which exhibit observed differences from hIAPP in aggregation propensities. We find that all four polypeptide monomers sample structured states in solution. More importantly, differences in the helicity over residues 7-16 may play an important role in early aggregation, although this region is outside of commonly assumed amyloidogenic region 20-29. The long-range contacts, though unexpected of IDPs, cause variation in sampled conformations among four polypeptides within same amino acid sequence. Our results also yield evidence that previously determined structures bound to micelles are also transiently sampled in the solution state. In particular, similarities found in region 8-17 together with the helical differences that we observe in region 7-16 lead us to suggest that the region 7-16 is potentially responsible for amyloidogenic behavior of amylin peptides. Our results also provide support for the proposed mechanism of fibril formation based on experimentally observed transient helices in amyloidogenic peptides.
Collapse
Affiliation(s)
- Cayla Miller
- Department of Chemical Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | | | | |
Collapse
|
28
|
Brender JR, Krishnamoorthy J, Messina GML, Deb A, Vivekanandan S, La Rosa C, Penner-Hahn JE, Ramamoorthy A. Zinc stabilization of prefibrillar oligomers of human islet amyloid polypeptide. Chem Commun (Camb) 2013; 49:3339-41. [PMID: 23505632 DOI: 10.1039/c3cc40383a] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) has been linked to beta-cell death in type II diabetes. Zinc present in secretory granules has been shown to affect this aggregation. A combination of EXAFS, NMR, and AFM experiments shows that the influence of zinc is most likely due to the stabilization of prefibrillar aggregates of hIAPP.
Collapse
Affiliation(s)
- Jeffrey R Brender
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Seeliger J, Werkmüller A, Winter R. Macromolecular crowding as a suppressor of human IAPP fibril formation and cytotoxicity. PLoS One 2013; 8:e69652. [PMID: 23922768 PMCID: PMC3726762 DOI: 10.1371/journal.pone.0069652] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/13/2013] [Indexed: 01/21/2023] Open
Abstract
The biological cell is known to exhibit a highly crowded milieu, which significantly influences protein aggregation and association processes. As several cell degenerative diseases are related to the self-association and fibrillation of amyloidogenic peptides, understanding of the impact of macromolecular crowding on these processes is of high biomedical importance. It is further of particular relevance as most in vitro studies on amyloid aggregation have been performed in diluted solution which does not reflect the complexity of their cellular surrounding. The study presented here focuses on the self-association of the type-2 diabetes mellitus related human islet amyloid polypeptide (hIAPP) in various crowded environments including network-forming macromolecular crowding reagents and protein crowders. It was possible to identify two competing processes: a crowder concentration and type dependent stabilization of globular off-pathway species and a--consequently--retarded or even inhibited hIAPP fibrillation reaction. The cause of these crowding effects was revealed to be mainly excluded volume in the polymeric crowders, whereas non-specific interactions seem to be most dominant in protein crowded environments. Specific hIAPP cytotoxicity assays on pancreatic β-cells reveal non-toxicity for the stabilized globular species, in contrast to the high cytotoxicity imposed by the normal fibrillation pathway. From these findings it can be concluded that cellular crowding is able to effectively stabilize the monomeric conformation of hIAPP, hence enabling the conduction of its normal physiological function and prevent this highly amyloidogenic peptide from cytotoxic aggregation and fibrillation.
Collapse
Affiliation(s)
- Janine Seeliger
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | - Alexander Werkmüller
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
30
|
Suzuki Y, Brender JR, Soper MT, Krishnamoorthy J, Zhou Y, Ruotolo BT, Kotov NA, Ramamoorthy A, Marsh ENG. Resolution of oligomeric species during the aggregation of Aβ1-40 using (19)F NMR. Biochemistry 2013; 52:1903-12. [PMID: 23445400 PMCID: PMC3628624 DOI: 10.1021/bi400027y] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the commonly used nucleation-dependent model of protein aggregation, aggregation proceeds only after a lag phase in which the concentration of energetically unfavorable nuclei reaches a critical value. The formation of oligomeric species prior to aggregation can be difficult to detect by current spectroscopic techniques. By using real-time (19)F NMR along with other techniques, we are able to show that multiple oligomeric species can be detected during the lag phase of Aβ1-40 fiber formation, consistent with a complex mechanism of aggregation. At least six types of oligomers can be detected by (19)F NMR. These include the reversible formation of large β-sheet oligomer immediately after solubilization at high peptide concentration, a small oligomer that forms transiently during the early stages of the lag phase, and four spectroscopically distinct forms of oligomers with molecular weights between ∼30 and 100 kDa that appear during the later stages of aggregation. The ability to resolve individual oligomers and track their formation in real-time should prove fruitful in understanding the aggregation of amyloidogenic proteins and in isolating potentially toxic nonamyloid oligomers.
Collapse
Affiliation(s)
- Yuta Suzuki
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Jeffrey R. Brender
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, Chemical Engineering, Materials Science, University of Michigan, Ann Arbor, MI 48109
| | - Molly T. Soper
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Janarthanan Krishnamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, Chemical Engineering, Materials Science, University of Michigan, Ann Arbor, MI 48109
| | - Yunlong Zhou
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | | | - Nicholas A. Kotov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, Chemical Engineering, Materials Science, University of Michigan, Ann Arbor, MI 48109
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, Chemical Engineering, Materials Science, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
31
|
Schönichen A, Webb BA, Jacobson MP, Barber DL. Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys 2013; 42:289-314. [PMID: 23451893 DOI: 10.1146/annurev-biophys-050511-102349] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modification is an evolutionarily conserved mechanism for regulating protein activity, binding affinity, and stability. Compared with established posttranslational modifications such as phosphorylation or ubiquitination, posttranslational modification by protons within physiological pH ranges is a less recognized mechanism for regulating protein function. By changing the charge of amino acid side chains, posttranslational modification by protons can drive dynamic changes in protein conformation and function. Addition and removal of a proton is rapid and reversible and, in contrast to most other posttranslational modifications, does not require an enzyme. Signaling specificity is achieved by only a minority of sites in proteins titrating within the physiological pH range. Here, we examine the structural mechanisms and functional consequences of proton posttranslational modification of pH-sensing proteins regulating different cellular processes.
Collapse
Affiliation(s)
- André Schönichen
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
32
|
Seeliger J, Estel K, Erwin N, Winter R. Cosolvent effects on the fibrillation reaction of human IAPP. Phys Chem Chem Phys 2013; 15:8902-7. [DOI: 10.1039/c3cp44412k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
He L, Wang X, Zhao C, Wang H, Du W. Ruthenium complexes as novel inhibitors of human islet amyloid polypeptide fibril formation. Metallomics 2013; 5:1599-603. [DOI: 10.1039/c3mt00146f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Suzuki Y, Brender JR, Hartman K, Ramamoorthy A, G. Marsh EN. Alternative pathways of human islet amyloid polypeptide aggregation distinguished by (19)f nuclear magnetic resonance-detected kinetics of monomer consumption. Biochemistry 2012; 51:8154-62. [PMID: 22998665 PMCID: PMC3543753 DOI: 10.1021/bi3012548] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid formation, a complex process involving many intermediate states, is proposed to be the driving force for amyloid-related toxicity in common degenerative diseases. Unfortunately, the details of this process have been obscured by the limitations in the methods that can follow this reaction in real time. We show that alternative pathways of aggregation can be distinguished by using (19)F nuclear magnetic resonance (NMR) to monitor monomer consumption along with complementary measurements of fibrillogenesis. The utility of this technique is demonstrated by tracking amyloid formation in the diabetes-related islet amyloid polypeptide (IAPP). Using this technique, we show IAPP fibrillizes without an appreciable buildup of nonfibrillar intermediates, in contrast to the well-studied Aβ and α-synuclein proteins. To further develop the usage of (19)F NMR, we have tracked the influence of the polyphenolic amyloid inhibitor epigallocatechin gallate (EGCG) on the aggregation pathway. Polyphenols have been shown to strongly inhibit amyloid formation in many systems. However, spectroscopic measurements of amyloid inhibition by these compounds can be severely compromised by background signals and competitive binding with extrinsic probes. Using (19)F NMR, we show that thioflavin T strongly competes with EGCG for binding sites on IAPP fibers. By comparing the rates of monomer consumption and fiber formation, we are able to show that EGCG stabilizes nonfibrillar large aggregates during fibrillogenesis.
Collapse
Affiliation(s)
- Yuta Suzuki
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | | | - Kevin Hartman
- Department of Biophysics University of Michigan, Ann Arbor, MI 48109
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics University of Michigan, Ann Arbor, MI 48109
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
35
|
Liu G, Gaines JC, Robbins KJ, Lazo ND. Kinetic profile of amyloid formation in the presence of an aromatic inhibitor by nuclear magnetic resonance. ACS Med Chem Lett 2012; 3:856-9. [PMID: 24900390 DOI: 10.1021/ml300147m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022] Open
Abstract
The self-assembly of amyloid proteins into β-sheet rich assemblies is associated with human amyloidoses including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. An attractive therapeutic strategy therefore is to develop small molecules that would inhibit protein self-assembly. Natural polyphenols are potential inhibitors of β-sheet formation. How these compounds affect the kinetics of self-assembly studied by thioflavin T (ThT) fluorescence is not understood primarily because their presence interferes with ThT fluorescence. Here, we show that by plotting peak intensities from nuclear magnetic resonance (NMR) against incubation time, kinetic profiles in the presence of the polyphenol can be obtained from which kinetic parameters of self-assembly can be easily determined. In applying this technique to the self-assembly of the islet amyloid polypeptide in the presence of curcumin, a biphenolic compound found in turmeric, we show that the kinetic profile is atypical in that it shows a prenucleation period during which there is no observable decrease in NMR peak intensities.
Collapse
Affiliation(s)
- Gai Liu
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| | - Jennifer C. Gaines
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| | - Kevin J. Robbins
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| | - Noel D. Lazo
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| |
Collapse
|
36
|
Li S, Micic M, Orbulescu J, Whyte JD, Leblanc RM. Human islet amyloid polypeptide at the air-aqueous interface: a Langmuir monolayer approach. J R Soc Interface 2012; 9:3118-28. [PMID: 22787008 DOI: 10.1098/rsif.2012.0368] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human islet amyloid polypeptide (hIAPP) is the source of the major component of the amyloid deposits found in the islets of Langerhans of around 95 per cent type 2 diabetic patients. The formation of aggregates and mature fibrils is thought to be responsible for the dysfunction and death of the insulin-producing pancreatic β-cells. Investigation on the conformation, orientation and self-assembly of the hIAPP at time zero could be beneficial for our understanding of its stability and aggregation process. To obtain these insights, the hIAPP at time zero was studied at the air-aqueous interface using the Langmuir monolayer technique. The properties of the hIAPP Langmuir monolayer at the air-aqueous interface on a NaCl subphase with pH 2.0, 5.6 and 9.0 were examined by surface pressure- and potential-area isotherms, UV-Vis absorption, fluorescence spectroscopy and Brewster angle microscopy. The conformational and orientational changes of the hIAPP Langmuir monolayer under different surface pressures were characterized by p-polarized infrared-reflection absorption spectroscopy, and the results did not show any prominent changes of conformation or orientation. The predominant secondary structure of the hIAPP at the air-aqueous interface was α-helix conformation, with a parallel orientation to the interface during compression. These results showed that the hIAPP Langmuir monolayer at the air-aqueous interface was stable, and no aggregate or domain of the hIAPP at the air-aqueous interface was observed during the time of experiments.
Collapse
Affiliation(s)
- Shanghao Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL 33146, USA
| | | | | | | | | |
Collapse
|
37
|
Sparks S, Liu G, Robbins KJ, Lazo ND. Curcumin modulates the self-assembly of the islet amyloid polypeptide by disassembling α-helix. Biochem Biophys Res Commun 2012; 422:551-5. [PMID: 22579683 DOI: 10.1016/j.bbrc.2012.05.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/03/2012] [Indexed: 12/19/2022]
Abstract
Understanding how small molecules affect amyloid formation is of major biomedical and pharmaceutical importance due to the association of amyloid with incurable diseases including Alzheimer's, Parkinson's, and type II diabetes. Using solution state (1)H NMR, we demonstrate that curcumin, a planar biphenolic compound found in the Indian spice turmeric, delays the self-assembly of islet amyloid polypeptide to NMR-invisible assemblies. Accompanying circular dichroism studies show that curcumin disassembles α-helix in maturing assemblies of IAPP. The amount of α-helix disassembled correlates with predicted and experimentally determined helical content of IAPP obtained by others. Taken together, these results indicate that curcumin modulates IAPP self-assembly by unfolding α-helix on pathway to amyloid. The implications of this work in the elucidation of the mechanism for amyloid formation by IAPP in the presence of curcumin are discussed.
Collapse
Affiliation(s)
- Samuel Sparks
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | | | | | | |
Collapse
|
38
|
Murphy RD, Conlon J, Mansoor T, Luca S, Vaiana SM, Buchete NV. Conformational dynamics of human IAPP monomers. Biophys Chem 2012; 167:1-7. [PMID: 22609945 DOI: 10.1016/j.bpc.2012.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 12/21/2022]
Abstract
We study the conformational dynamics of the human Islet Amyloid Polypeptide (hIAPP) molecule - a 37 residue-long peptide associated to type 2 diabetes - using molecular dynamics (MD) simulations. We identify partially structured conformational states of the hIAPP monomer, categorized by both end-to-end distance and secondary structure, as suggested by previous experimental and computational studies. The MD trajectories of hIAPP are analyzed using data-driven methods, in particular principal component analysis, in order to identify preferred conformational states of the amylin monomer and to discuss their relative stability as compared to corresponding states in the amylin dimer. These potential hIAPP conformational states could be further tested and described experimentally, or in conjunction with modern computational analysis tools such as Markov state-based methods for extracting kinetics and thermodynamics from atomistic MD trajectories.
Collapse
Affiliation(s)
- Ronan D Murphy
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
39
|
Seeliger J, Winter R. Islet amyloid polypeptide: aggregation and fibrillogenesis in vitro and its inhibition. Subcell Biochem 2012; 65:185-209. [PMID: 23225004 DOI: 10.1007/978-94-007-5416-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of type 2 diabetes mellitus is associated with the dysfunction of b-cells which is correlated to the formation of deposits consisting of the islet amyloid polypeptide (IAPP). The process of human IAPP (hIAPP) self-association, the intermediate structures formed as well as the interaction of hIAPP with membrane systems seem to be responsible for the cytotoxicity. For monomeric hIAPP, a natively random coil conformation with transient a-helical parts could be determined in bulk solution, which rapidly converts to an amyloid structure consisting of cross b-sheets. By comparing the amyloidogenic propensities of hIAPP in the bulk and in the presence of various neutral and charged lipid bilayer systems as well as biological membranes, an enhancing effect of anionic and heterogeneous membranes to hIAPP fibril formation has been found. We also discuss the cross-interaction of hIAPP with other amyloidogenic peptides (e.g., insulin and Ab) and present first small-molecule inhibitors of the fibrillation process of hIAPP.
Collapse
Affiliation(s)
- Janine Seeliger
- Faculty of Chemistry, Physical Chemistry I-Biophysical Chemistry, TU Dortmund University, Otto-Hahn Str. 6, 44227, Dortmund, Germany,
| | | |
Collapse
|
40
|
The Structure of Intrinsically Disordered Peptides Implicated in Amyloid Diseases: Insights from Fully Atomistic Simulations. COMPUTATIONAL MODELING OF BIOLOGICAL SYSTEMS 2012. [DOI: 10.1007/978-1-4614-2146-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Nath A, Miranker AD, Rhoades E. A Membrane-Bound Antiparallel Dimer of Rat Islet Amyloid Polypeptide. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Nath A, Miranker AD, Rhoades E. A membrane-bound antiparallel dimer of rat islet amyloid polypeptide. Angew Chem Int Ed Engl 2011; 50:10859-62. [PMID: 21948544 DOI: 10.1002/anie.201102887] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/27/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Abhinav Nath
- Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
43
|
Nanga RPR, Brender JR, Vivekanandan S, Ramamoorthy A. Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2337-42. [PMID: 21723249 DOI: 10.1016/j.bbamem.2011.06.012] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/25/2022]
Abstract
Human islet amyloid polypeptide is a hormone coexpressed with insulin by pancreatic beta-cells. For reasons not clearly understood, hIAPP aggregates in type II diabetics to form oligomers that interfere with beta-cell function, eventually leading to the loss of insulin production. The cellular membrane catalyzes the formation of amyloid deposits and is a target of amyloid toxicity through disruption of the membrane's structural integrity. Therefore, there is considerable current interest in solving the 3D structure of this peptide in a membrane environment. NMR experiments could not be directly utilized in lipid bilayers due to the rapid aggregation of the peptide. To overcome this difficulty, we have solved the structure of the naturally occurring peptide in detergent micelles at a neutral pH. The structure has an overall kinked helix motif, with residues 7-17 and 21-28 in a helical conformation, and with a 3(10) helix from Gly 33-Asn 35. In addition, the angle between the N- and C-terminal helices is constrained to 85°. The greater helical content of human IAPP in the amidated versus free acid form is likely to play a role in its aggregation and membrane disruptive activity.
Collapse
|
44
|
Andreetto E, Yan LM, Caporale A, Kapurniotu A. Dissecting the role of single regions of an IAPP mimic and IAPP in inhibition of Aβ40 amyloid formation and cytotoxicity. Chembiochem 2011; 12:1313-22. [PMID: 21630409 DOI: 10.1002/cbic.201100192] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are linked to the self-association of β-amyloid peptide (Aβ) and islet amyloid polypeptide (IAPP), respectively. We have shown that IAPP-GI, a soluble IAPP analogue and mimic of nonamyloidogenic and nontoxic IAPP, binds Aβ with high affinity and blocks its cytotoxic self-assembly and fibrillogenesis. We have also shown that IAPP and Aβ interact with each other into nonfibrillar and nontoxic heterocomplexes that suppress cytotoxic self-association by both polypeptides. The Aβ-IAPP interaction might thus be a molecular link between AD and T2D. We studied the role of individual IAPP-GI and IAPP regions in their inhibitory function on Aβ40 self-association and cytotoxicity. We found that the presence of the two hot-spot regions of the Aβ-IAPP interaction interface in IAPP(8-28) is not sufficient for inhibitory function and that, in addition to IAPP(8-28), the presence of the N-terminal region IAPP(1-7) is absolutely required. By contrast, the C-terminal region, IAPP(30-37), is not required although its presence together with IAPP(1-7) in IAPP-GI results in a marked enhancement of the inhibitory effect as compared to IAPP(1-28)-GI. We suggest that the inhibitory effect of IAPP-GI and IAPP on Aβ40 fibrillogenesis and cell toxicity is mediated primarily by interactions involving the hot regions of the Aβ-IAPP interaction interface and the N terminus of IAPP while a concerted and likely structure-stabilizing action of the N- and C-terminal IAPP regions potentiates this effect. These results identify important molecular determinants of the amyloid suppressing function of the Aβ40-IAPP interaction and could contribute to the design of novel inhibitors of Aβ40 aggregation and cell degeneration.
Collapse
Affiliation(s)
- Erika Andreetto
- Division of Peptide Biochemistry, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
45
|
Salamekh S, Brender JR, Hyung SJ, Nanga RPR, Vivekanandan S, Ruotolo BT, Ramamoorthy A. A two-site mechanism for the inhibition of IAPP amyloidogenesis by zinc. J Mol Biol 2011; 410:294-306. [PMID: 21616080 DOI: 10.1016/j.jmb.2011.05.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/04/2011] [Accepted: 05/07/2011] [Indexed: 01/09/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) is a highly amyloidogenic protein co-secreted with insulin in response to glucose levels. The formation of hIAPP amyloid plaques near islet cells has been linked to the death of insulin-secreting β-cells in humans and the progression of type II diabetes. Since both healthy individuals and those with type II diabetes produce and secrete hIAPP, it is reasonable to look for factors involved in storing hIAPP and preventing amyloidosis. We have previously shown that zinc inhibits the formation of insoluble amyloid plaques of hIAPP; however, there remains significant ambiguity in the underlying mechanisms. In this study, we show that zinc binds unaggregated hIAPP at micromolar concentrations similar to those found in the extracellular environment. By contrast, the fibrillar amyloid form of hIAPP has low affinity for zinc. The binding stoichiometry obtained from isothermal titration calorimetry experiments indicates that zinc favors the formation of hIAPP hexamers. High-resolution NMR structures of hIAPP bound to zinc reveal changes in the electron environment along residues that would be located along one face of the amphipathic hIAPP α-helix proposed as an intermediate for amyloid formation. Results from electrospray ionization mass spectroscopy investigations showed that a single zinc atom is predominantly bound to hIAPP and revealed that zinc inhibits the formation of the dimer. At higher concentrations of zinc, a second zinc atom binds to hIAPP, suggesting the presence of a low-affinity secondary binding site. Combined, these results suggest that zinc promotes the formation of oligomers while creating an energetic barrier for the formation of amyloid fibers.
Collapse
Affiliation(s)
- Samer Salamekh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Laghaei R, Mousseau N, Wei G. Structure and Thermodynamics of Amylin Dimer Studied by Hamiltonian-Temperature Replica Exchange Molecular Dynamics Simulations. J Phys Chem B 2011; 115:3146-54. [DOI: 10.1021/jp108870q] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rozita Laghaei
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec), Canada
| | - Normand Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec), Canada
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
47
|
Andrews MN, Winter R. Comparing the structural properties of human and rat islet amyloid polypeptide by MD computer simulations. Biophys Chem 2010; 156:43-50. [PMID: 21266296 DOI: 10.1016/j.bpc.2010.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 12/26/2010] [Accepted: 12/26/2010] [Indexed: 10/18/2022]
Abstract
Conformational properties of the full-length human and rat islet amyloid polypeptide 1-37 (amyloidogenic hIAPP and non-amyloidogenic rIAPP, respectively) were studied at 310 and 330 K by MD simulations both for the cysteine (reduced IAPP) and cystine (oxidized IAPP) moieties. At all temperatures studied, IAPP does not adopt a well-defined conformation and is essentially random coil in solution, although transient helices appear forming along the peptide between residues 8 and 22, particularly in the reduced form. Above the water percolation transition (at 320 K), the reduced hIAPP moiety presents a considerably diminished helical content remaining unstructured, while the natural cystine moiety reaches a rather compact state, presenting a radius of gyration that is almost 10% smaller and characterized by intrapeptide H-bonds that form many β-bridges in the C-terminal region. This compact conformation presents a short end-to-end distance and seems to form through the formation of β-sheet conformations in the C-terminal region with a minimization of the Y/F distances in a two-step mechanism: the first step taking place when the Y37/F23 distance is ~1.1 nm, and subsequently Y37/F15 reaches its minimum of ~0.86 nm. rIAPP, which does not aggregate, also presents transient helical conformations. A particularly stable helix is located in proximity of the C-terminal region, starting from residues L27 and P28. Our MD simulations show that P28 in rIAPP influences the secondary structure of IAPP by stabilizing the peptide in helical conformations. When this helix is not present, the peptide presents bends or H-bonded turns at P28 that seem to inhibit the formation of the β-bridges seen in hIAPP. Conversely, hIAPP is highly disordered in the C-terminal region, presenting transient isolated β-strand conformations, particularly at higher temperatures and when the natural disulfide bond is present. Such conformational differences found in our simulations could be responsible for the different aggregational propensities of the two different homologues. In fact, the fragment 30-37, which is identical in both homologues, is known to aggregate in vitro, hence the overall sequence must be responsible for the amyloidogenicity of hIAPP. The increased helicity in rIAPP induced by the serine-to-proline variation at residue 28 seems to be a plausible inhibitor of its aggregation.
Collapse
Affiliation(s)
- Maximilian N Andrews
- Faculty of Chemistry, Physical Chemistry I—Biophysical Chemistry, TU Dortmund University, Germany.
| | | |
Collapse
|
48
|
Brender JR, Hartman K, Nanga RPR, Popovych N, de la Salud Bea R, Vivekanandan S, Marsh ENG, Ramamoorthy A. Role of zinc in human islet amyloid polypeptide aggregation. J Am Chem Soc 2010; 132:8973-83. [PMID: 20536124 PMCID: PMC2904811 DOI: 10.1021/ja1007867] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human Islet Amyloid Polypeptide (hIAPP) is a highly amyloidogenic protein found in islet cells of patients with type II diabetes. Because hIAPP is highly toxic to beta-cells under certain conditions, it has been proposed that hIAPP is linked to the loss of beta-cells and insulin secretion in type II diabetics. One of the interesting questions surrounding this peptide is how the toxic and aggregation prone hIAPP peptide can be maintained in a safe state at the high concentrations that are found in the secretory granule where it is stored. We show here zinc, which is found at millimolar concentrations in the secretory granule, significantly inhibits hIAPP amyloid fibrillogenesis at concentrations similar to those found in the extracellular environment. Zinc has a dual effect on hIAPP fibrillogenesis: it increases the lag-time for fiber formation and decreases the rate of addition of hIAPP to existing fibers at lower concentrations, while having the opposite effect at higher concentrations. Experiments at an acidic pH which partially neutralizes the change in charge upon zinc binding show inhibition is largely due to an electrostatic effect at His18. High-resolution structures of hIAPP determined from NMR experiments confirm zinc binding to His18 and indicate zinc induces localized disruption of the secondary structure of IAPP in the vicinity of His18 of a putative helical intermediate of IAPP. The inhibition of the formation of aggregated and toxic forms of hIAPP by zinc provides a possible mechanism between the recent discovery of linkage between deleterious mutations in the SLC30A8 zinc transporter, which transports zinc into the secretory granule, and type II diabetes.
Collapse
Affiliation(s)
- Jeffrey R. Brender
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Kevin Hartman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | - Natalya Popovych
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Roberto de la Salud Bea
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Subramanian Vivekanandan
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
49
|
Laghaei R, Mousseau N, Wei G. Effect of the Disulfide Bond on the Monomeric Structure of Human Amylin Studied by Combined Hamiltonian and Temperature Replica Exchange Molecular Dynamics Simulations. J Phys Chem B 2010; 114:7071-7. [DOI: 10.1021/jp100205w] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rozita Laghaei
- Département de Physique and Regroupement québécois sur les matériaux de pointe, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec), Canada
| | - Normand Mousseau
- Département de Physique and Regroupement québécois sur les matériaux de pointe, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec), Canada
| | - Guanghong Wei
- Department of Physics and Surface Physics Laboratory (National Key Laboratory), Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
50
|
Andreetto E, Yan LM, Tatarek-Nossol M, Velkova A, Frank R, Kapurniotu A. Identification of Hot Regions of the Aβ-IAPP Interaction Interface as High-Affinity Binding Sites in both Cross- and Self-Association. Angew Chem Int Ed Engl 2010; 49:3081-5. [DOI: 10.1002/anie.200904902] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|