1
|
Mettu R, Cheng YY, Vulupala HR, Lih YH, Chen CY, Hsu MH, Lo HJ, Liao KS, Chiu CH, Wu CY. Chemical Synthesis of Truncated Capsular Oligosaccharide of Serotypes 6C and 6D of Streptococcus pneumoniae with Their Immunological Studies. ACS Infect Dis 2024; 10:2161-2171. [PMID: 38770797 PMCID: PMC11184553 DOI: 10.1021/acsinfecdis.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Serotypes 6C and 6D of Streptococcus pneumoniae are two major variants that cause invasive pneumococcal disease (IPD) in serogroup 6 alongside serotypes 6A and 6B. Since the introduction of the pneumococcal conjugate vaccines PCV7 and PCV13, the number of cases of IPD caused by pneumococcus in children and the elderly population has greatly decreased. However, with the widespread use of vaccines, a replacement effect has recently been observed among different serotypes and lowered the effectiveness of the vaccines. To investigate protection against the original serotypes and to explore protection against variants and replacement serotypes, we created a library of oligosaccharide fragments derived from the repeating units of the capsular polysaccharides of serotypes 6A, 6B, 6C, and 6D through chemical synthesis. The library includes nine pseudosaccharides with or without exposed terminal phosphate groups and four pseudotetrasaccharides bridged by phosphate groups. Six carbohydrate antigens related to 6C and 6D were prepared as glycoprotein vaccines for immunogenicity studies. Two 6A and two 6B glycoconjugate vaccines from previous studies were included in immunogenicity studies. We found that the conjugates containing four phosphate-bridged pseudotetrasaccharides were able to induce good immune antibodies and cross-immunogenicity by showing superior activity and broad cross-protective activity in OPKA bactericidal experiments.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yang-Yu Cheng
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, No. 155, Section 2, Linong Street, Taipei 112304, Taiwan
| | - Hanmanth Reddy Vulupala
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Hsuan Lih
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Mei-Hua Hsu
- Molecular
Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 259 Wenhua First Road, Guishan, Taoyuan 33302, Taiwan
| | - Hong-Jay Lo
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Cheng-Hsun Chiu
- Molecular
Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 259 Wenhua First Road, Guishan, Taoyuan 33302, Taiwan
| | - Chung-Yi Wu
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Cheng Y, Shen R, Liu F, Li Y, Wang J, Hou Y, Liu Y, Zhou H, Hou F, Wang Y, Li X, Qiao R, Luo S. Humoral and cellular immune responses induced by serogroup W135 meningococcal conjugate and polysaccharide vaccines. Vaccine 2024; 42:2781-2792. [PMID: 38508928 DOI: 10.1016/j.vaccine.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Investigating the mechanisms by which W135 meningococcal conjugate (PSW135-TT) activates adaptive immune responses in mice can provide a comprehensive understanding of the immune mechanisms of bacterial polysaccharide conjugate vaccines. We compared B-cell and T-cell immune responses immunized with W135 meningococcal capsular polysaccharides (PSW135), tetanus toxoid (TT) and PSW135-TT in mice. The results showed that PSW135-TT could induce higher PSW135-specific and TT-specific IgG antibodies with a significant enhancement after two doses. All serum antibodies immunized with PSW135- TT had strong bactericidal activity, whereas none of the serum antibodies immunized with PSW135 had bactericidal activity. Besides, IgM and IgG antibodies immunized with PSW135-TT after two doses were positively correlated with the titer of bactericidal antibodies. We also found Th cells favored Th2 humoral immune responses in PSW135-TT, PSW135, and TT-immunized mice, especially peripheral blood lymphocytes. Furthermore, PSW135-TT and TT could effectively activate bone marrow derived dendritic cells (BMDCs) and promote BMDCs to highly express major histocompatibility complex Ⅱ (MHCⅡ), CD86 and CD40 molecules in mice, whereas PSW135 couldn't. These data verified the typical characteristics of PSW135-TT and TT as T cell dependent antigen (TD-Ag) and PSW135 as T cell independent antigen (TI-Ag), which will be very helpful for further exploration of the immune mechanism of polysaccharide-protein conjugate vaccines and improvement of the quality of bacterial polysaccharide conjugate vaccines in future.
Collapse
Affiliation(s)
- Yahui Cheng
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Rong Shen
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Fanglei Liu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yanting Li
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Jing Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yali Hou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yueping Liu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Haifei Zhou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Fengping Hou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yunjin Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Ruijie Qiao
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China.
| | - Shuquan Luo
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China.
| |
Collapse
|
3
|
Mettu R, Lih YH, Vulupala HR, Chen CY, Hsu MH, Lo HJ, Liao KS, Cheng YY, Chiu CH, Wu CY. Synthetic Library of Oligosaccharides Derived from the Capsular Polysaccharide of Streptococcus pneumoniae Serotypes 6A and 6B and Their Immunological Studies. ACS Infect Dis 2022; 8:626-634. [PMID: 35171577 DOI: 10.1021/acsinfecdis.1c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Streptococcus pneumoniae serotypes 6A and 6B are two of the common causes of invasive pneumococcal diseases. Although capsular polysaccharide conjugates of these two serotypes are included in the leading 13-valent pneumococcal conjugate vaccine, its low immunogenicity and high threshold for manufacturing technology indicated the need for vaccine improvement. Structurally defined synthetic immunogens have potential in dealing with these problems. To this end, we built a library of capsular polysaccharide fragments through convergent chemical synthesis in [2 + 2], [4 + 4], [4 + 3], [4 + 2], and [4 + 1] coupling manners. The library is comprised of 18 glycan antigens from trisaccharides to pseudo-octasaccharides, derived from the capsular repeating phosphorylated pseudo-tetrasaccharide with or without phosphate. Eight of them were selected for mouse immunization and further immunological studies. Four pseudo-tetrasaccharides with terminal or bridging phosphate elicited opsonic antibodies, which exhibited bactericidal activities and moderate cross-reactivities.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Hsuan Lih
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, 128 Academia Road, Section 2,
Nankang, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, 1 Roosevelt Road, Section 4, Daan, Taipei 10617, Taiwan
| | - Hanmanth Reddy Vulupala
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Mei-Hua Hsu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 259 Wenhua first Road, Guishan, Taoyuan 33302, Taiwan
| | - Hong-Jay Lo
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 259 Wenhua first Road, Guishan, Taoyuan 33302, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, 128 Academia Road, Section 2,
Nankang, Taipei 11529, Taiwan
| |
Collapse
|
4
|
Sukhova EV, Yashunsky DV, Kurbatova EA, Akhmatova EA, Tsvetkov YE, Nifantiev NE. Synthesis and Preliminary Immunological Evaluation of a Pseudotetrasaccharide Related to a Repeating Unit of the Streptococcus pneumoniae Serotype 6A Capsular Polysaccharide. Front Mol Biosci 2021; 8:754753. [PMID: 34966778 PMCID: PMC8710661 DOI: 10.3389/fmolb.2021.754753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
2-Aminoethyl glycoside of the pseudotetrasaccharide α-d-Glcp-(1→3)-α-l-Rhap-(1→3)-d-Rib-ol-(5-P-2)-α-d-Galp corresponding to a repeating unit of the Streptococcus pneumoniae type 6A capsular polysaccharide has been synthesized. A suitably protected pseudotrisaccharide α-d-Glcp-(1→3)-α-l-Rhap-(1→3)-d-Rib-ol with a free 5-OH group in the ribitol moiety and a 2-OH derivative of 2-trifluoroacetamidoethyl α-d-galactopyranoside have been efficiently prepared and then connected via a phosphate bridge using the hydrogen phosphonate procedure. Preliminary immunological evaluation of this pseudotetrasaccharide and the previously synthesized pseudotetrasaccharide corresponding to a repeating unit of the capsular polysaccharide of S. pneumoniae serotype 6B has shown that they contain epitopes specifically recognized by anti-serogroup 6 antibodies and are able to model well the corresponding capsular polysaccharides. Conjugates of the synthetic pseudotetrasaccharides with bovine serum albumin were shown to be immunogenic in mice.
Collapse
Affiliation(s)
- Elena V Sukhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elina A Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Gening ML, Kurbatova EA, Nifantiev NE. Synthetic Analogs of Streptococcus pneumoniae Capsular Polysaccharides and Immunogenic Activities of Glycoconjugates. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:1-25. [PMID: 33776393 PMCID: PMC7980793 DOI: 10.1134/s1068162021010076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium (pneumococcus) that causes severe diseases in adults and children. It was established that some capsular polysaccharides of the clinically significant serotypes of S. pneumoniae in the composition of commercial pneumococcal polysaccharide or conjugate vaccines exhibit low immunogenicity. The review considers production methods and structural features of the synthetic oligosaccharides from the problematic pneumococcal serotypes that are characterized with low immunogenicity due to destruction or detrimental modification occurring in the process of their preparation and purification. Bacterial serotypes that cause severe pneumococcal diseases as well as serotypes not included in the composition of the pneumococcal conjugate vaccines are also discussed. It is demonstrated that the synthetic oligosaccharides corresponding to protective glycotopes of the capsular polysaccharides of various pneumococcal serotypes are capable of inducing formation of the protective opsonizing antibodies and immunological memory. Optimal constructs of oligosaccharides from the epidemiologically significant pneumococcal serotypes are presented that can be used for designing synthetic pneumococcal vaccines, as well as test systems for diagnosis of S. pneumoniae infections and monitoring of vaccination efficiency .
Collapse
Affiliation(s)
- M. L. Gening
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E A. Kurbatova
- Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia
| | - N. E. Nifantiev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Chaudhury A, Mukherjee MM, Ghosh R. Synthetic avenues towards a tetrasaccharide related to Streptococcus pneumonia of serotype 6A. Beilstein J Org Chem 2018; 14:1095-1102. [PMID: 29977381 PMCID: PMC6009338 DOI: 10.3762/bjoc.14.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/26/2018] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumonia (SPn) is a Gram-positive bacterium which causes life threatening diseases. The bacteria protect themselves against non-specific host defence by an external polysaccharide (PS) capsule which bears a repeating unit, α-D-Galp(1->3)-α-D-Glcp(1->3)-α-L-Rhap(1->3)-D-Rib (SPn 6A). A closer look at the structure reveals the presence of α-linked galactose and glucose residues. The synthesis of these 1,2-cis glycosidic linkages are considered challenging particularly in the context of a one-pot oligosaccharide synthesis. We have synthesized the aforesaid tetrasaccharide (SPn 6A) based on both stepwise and sequential one-pot glycosylation reactions using easily accessible common building blocks; eventually similar overall yields were obtained in both cases.
Collapse
Affiliation(s)
- Aritra Chaudhury
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Rd., Kolkata 700032, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | - Mana Mohan Mukherjee
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Rd., Kolkata 700032, India.,present addrress: Laboratory of Bioorganic Chemistry, NIH, NIDDK, Bethesda, MD, USA
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Rd., Kolkata 700032, India
| |
Collapse
|
7
|
Sukhova EV, Yashunsky DV, Kurbatova EA, Tsvetkov YE, Nifantiev NE. Synthesis of a pseudotetrasaccharide corresponding to a repeating unit of the Streptococcus pneumoniae type 6B capsular polysaccharide*. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2017.1420797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Elena V. Sukhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| | - Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Mal. Kazennyi per. 5a, Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| |
Collapse
|
8
|
Xu P, Kelly M, Vann WF, Qadri F, Ryan ET, Kováč P. Conjugate Vaccines from Bacterial Antigens by Squaric Acid Chemistry: A Closer Look. Chembiochem 2017; 18:799-815. [PMID: 28182850 PMCID: PMC5664186 DOI: 10.1002/cbic.201600699] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 11/09/2022]
Abstract
By using O-SP-core (O-SPcNH2 ) polysaccharide, isolated from Vibrio cholera O1 lipopolysaccharide (LPS) and related synthetic substances, a detailed study of factors that affect conjugation of bacterial polysaccharides to protein carriers through squaric acid chemistry to form conjugate vaccines has been carried out. Several previously unrecognized processes that take place during the squarate labeling of the O-SPcNH2 and subsequent conjugation of the formed squarate (O-SPcNH-SqOMe) have been identified. The efficiency of conjugation at pH 8.5, 9.0, and 9.5 to bovine serum albumin (BSA) and to the recombinant tetanus toxin fragment C (rTT-Hc) has been determined. The study led to a protocol for more efficient labeling of O-SPcNH2 antigen with the methyl squarate group, to yield a higher-quality, more potent squarate conjugation reagent. Its use resulted in about twofold increases in conjugation efficiency (from 23-26 % on BSA to 51 % on BSA and 55 % on rTT-Hc). The spent conjugation reagent could be recovered and regenerated by treatment with MeI in the absence of additional base. The immunological properties of the experimental vaccine made from the regenerated conjugation reagent were comparable with those of the immunogen made from the parent O-SPcNH-SqOMe.
Collapse
Affiliation(s)
- Peng Xu
- NIDDK, LBC, Section on Carbohydrates, National Institutes of Health (NIH), Bethesda, MD, 20892-0815, USA
| | - Meagan Kelly
- Department of Immunology and Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Willie F Vann
- Laboratory of Bacterial Toxins, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh, icddr, b), Dhaka, Bangladesh
| | - Edward T Ryan
- Department of Immunology and Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Shattuck Street, Boston, MA, 02115, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Pavol Kováč
- NIDDK, LBC, Section on Carbohydrates, National Institutes of Health (NIH), Bethesda, MD, 20892-0815, USA
| |
Collapse
|
9
|
Yang Y, Liu HP, Yu Q, Yang MB, Wang DM, Jia TW, He HJ, He Y, Xiao HX, Iyer SS, Fan ZC, Meng X, Yu P. Multivalent S-sialoside protein conjugates block influenza hemagglutinin and neuraminidase. Carbohydr Res 2016; 435:68-75. [DOI: 10.1016/j.carres.2016.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/28/2022]
|
10
|
Richard E, Buon L, Drouillard S, Fort S, Priem B. Bacterial synthesis of polysialic acid lactosides in recombinantEscherichia coliK-12. Glycobiology 2016; 26:723-731. [DOI: 10.1093/glycob/cww027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
|
11
|
Gening ML, Kurbatova EA, Tsvetkov YE, Nifantiev NE. Development of approaches to a third-generation carbohydrate-conjugate vaccine againstStreptococcus pneumoniae: the search for optimal oligosaccharide ligands. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4574] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
13
|
Anish C, Schumann B, Pereira CL, Seeberger PH. Chemical biology approaches to designing defined carbohydrate vaccines. ACTA ACUST UNITED AC 2015; 21:38-50. [PMID: 24439205 DOI: 10.1016/j.chembiol.2014.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 01/08/2023]
Abstract
Carbohydrate antigens have shown promise as important targets for developing effective vaccines and pathogen detection strategies. Modifying purified microbial glycans through synthetic routes or completely synthesizing antigenic motifs are attractive options to advance carbohydrate vaccine development. However, limited knowledge on structure-property correlates hampers the discovery of immunoprotective carbohydrate epitopes. Recent advancements in tools for glycan modification, high-throughput screening of biological samples, and 3D structural analysis may facilitate antigen discovery process. This review focuses on advances that accelerate carbohydrate-based vaccine development and various technologies that are driving these efforts. Herein we provide a critical overview of approaches and resources available for rational design of better carbohydrate antigens. Structurally defined and fully synthetic oligosaccharides, designed based on molecular understanding of antigen-antibody interactions, offer a promising alternative for developing future carbohydrate vaccines.
Collapse
Affiliation(s)
- Chakkumkal Anish
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Benjamin Schumann
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Claney Lebev Pereira
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Peter H Seeberger
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
14
|
Hasty SJ, Demchenko AV. Glycosyl Thioimidates as Versatile Building Blocks for Organic Synthesis. Chem Heterocycl Compd (N Y) 2012; 48. [PMID: 24288416 DOI: 10.1007/s10593-012-0984-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review discusses the synthesis and application of glycosyl thioimidates in chemical glycosylation and oligosaccharide assembly. Although glycosyl thioimidates include a broad range of compounds, the discussion herein centers on S-benzothiazolyl (SBaz), S-benzoxazolyl (SBox), S-thiazolinyl (STaz), and S-benzimidazolyl (SBiz) glycosides. These heterocyclic moieties have recently emerged as excellent anomeric leaving groups that express unique characteristics for highly diastereoselective glycosylation and help to provide the streamlined access to oligosaccharides.
Collapse
Affiliation(s)
- S J Hasty
- University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | | |
Collapse
|
15
|
Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: recent advances. Biotechnol Adv 2012; 31:17-37. [PMID: 22484115 DOI: 10.1016/j.biotechadv.2012.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/06/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022]
Abstract
The glycan code of glycoproteins can be conceptually defined at molecular level by the sequence of well characterized glycans attached to evolutionarily predetermined amino acids along the polypeptide chain. Functional consequences of protein glycosylation are numerous, and include a hierarchy of properties from general physicochemical characteristics such as solubility, stability and protection of the polypeptide from the environment up to specific glycan interactions. Definition of the glycan code for glycoproteins has been so far hampered by the lack of chemically defined glycoprotein glycoforms that proved to be extremely difficult to purify from natural sources, and the total chemical synthesis of which has been hitherto possible only for very small molecular species. This review summarizes the recent progress in chemical and chemoenzymatic synthesis of complex glycans and their protein conjugates. Progress in our understanding of the ways in which a particular glycoprotein glycoform gives rise to a unique set of functional properties is now having far reaching implications for the biotechnology of important glycodrugs such as therapeutical monoclonal antibodies, glycoprotein hormones, carbohydrate conjugates used for vaccination and other practically important protein-carbohydrate conjugates.
Collapse
|
16
|
Morelli L, Poletti L, Lay L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100296] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Morelli
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Laura Poletti
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|