1
|
Efficient one-pot enzymatic synthesis of dephospho coenzyme A. Bioorg Chem 2017; 76:23-27. [PMID: 29107839 DOI: 10.1016/j.bioorg.2017.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/23/2022]
Abstract
Dephospho coenzyme A (depCoA) is the last intermediate for CoA biosynthesis, and it can be used as a transcription initiator to prepare CoA-linked RNA by in vitro transcription. However, commercially available depCoA is expensive. We hereby describe a simple and efficient enzymatic synthesis of depCoA in a single-step from commercially available and inexpensive oxidized pantethine (Ox-Pan) and ATP. A plasmid (pCoaDAa) was constructed to co-express and co-purify two enzymes pantothenate kinase (PanK/coaA) and phosphopantetheine adenylyltransferase (PPAT/coaD). Starting from Ox-Pan and ATP, two different synthetic routes of one-pot reaction catalyzed by PanK and PPAT, followed by a simple column purification step, afforded depCoA and its oxidized dimer (Ox-depCoA) with high yields and purity. The simplicity and low cost of our method should make depCoA easily accessible to a broad scientific community, and promote research on CoA-related areas in biology and biomedicine.
Collapse
|
2
|
Kulkarni RA, Worth AJ, Zengeya TT, Shrimp JH, Garlick JM, Roberts AM, Montgomery DC, Sourbier C, Gibbs BK, Mesaros C, Tsai YC, Das S, Chan KC, Zhou M, Andresson T, Weissman AM, Linehan WM, Blair IA, Snyder NW, Meier JL. Discovering Targets of Non-enzymatic Acylation by Thioester Reactivity Profiling. Cell Chem Biol 2017; 24:231-242. [PMID: 28163016 DOI: 10.1016/j.chembiol.2017.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/14/2016] [Accepted: 01/10/2017] [Indexed: 01/15/2023]
Abstract
Non-enzymatic protein modification driven by thioester reactivity is thought to play a major role in the establishment of cellular lysine acylation. However, the specific protein targets of this process are largely unknown. Here we report an experimental strategy to investigate non-enzymatic acylation in cells. Specifically, we develop a chemoproteomic method that separates thioester reactivity from enzymatic utilization, allowing selective enrichment of non-enzymatic acylation targets. Applying this method to cancer cell lines identifies numerous candidate targets of non-enzymatic acylation, including several enzymes in lower glycolysis. Functional studies highlight malonyl-CoA as a reactive thioester metabolite that can modify and inhibit glycolytic enzyme activity. Finally, we show that synthetic thioesters can be used as novel reagents to probe non-enzymatic acylation in living cells. Our studies provide new insights into the targets and drivers of non-enzymatic acylation, and demonstrate the utility of reactivity-based methods to experimentally investigate this phenomenon in biology and disease.
Collapse
Affiliation(s)
- Rhushikesh A Kulkarni
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Andrew J Worth
- Penn SRP Center, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas T Zengeya
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jonathan H Shrimp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Julie M Garlick
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Allison M Roberts
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - David C Montgomery
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Benjamin K Gibbs
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Clementina Mesaros
- Penn SRP Center, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - King C Chan
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Ming Zhou
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Ian A Blair
- Penn SRP Center, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathaniel W Snyder
- Drexel University, A.J. Drexel Autism Institute, 3020 Market Street, Philadelphia, PA 19104, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|