1
|
Peng L, Helgason E, Miranda R, Tom J, Zhang J, Dueber EC, Song A. N- tert-Butoxycarbonyl- N-(2-(tritylthio)ethoxy)glycine as a Building Block for Peptide Ubiquitination. Bioconjug Chem 2024; 35:245-253. [PMID: 38236171 PMCID: PMC10885006 DOI: 10.1021/acs.bioconjchem.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
N-Boc-N-(2-(tritylthio)ethoxy)glycine has been developed as a building block for peptide ubiquitination, which is fully compatible with solid-phase Fmoc chemistry and common peptide modifications including phosphorylation, methylation, acetylation, biotinylation, and fluorescence labeling. The optimal conditions for peptide cleavage and auxiliary removal were obtained. The utility of this building block in peptide ubiquitination was demonstrated by the synthesis of seven ubiquitinated histone and Tau peptides bearing various modifications. Cys residues were well tolerated and did not require orthogonal protection. The structural integrity and folding of the synthesized ubiquitinated peptides were confirmed by enzymatic deubiquitination of a fluorescently labeled ubiquitin conjugate. The synthetic strategy using this building block provides a practical approach for the preparation of ubiquitinated peptides with diverse modifications.
Collapse
Affiliation(s)
- Lingling Peng
- Department
of Peptide Therapeutics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elizabeth Helgason
- Department
of Biological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rafael Miranda
- Department
of Biological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeffrey Tom
- Department
of Peptide Therapeutics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jennifer Zhang
- Department
of Protein Analytical Chemistry, Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Erin C. Dueber
- Department
of Biological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimin Song
- Department
of Peptide Therapeutics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
2
|
Burke HM, McSweeney L, Scanlan EM. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology. Nat Commun 2017; 8:15655. [PMID: 28537277 PMCID: PMC5458133 DOI: 10.1038/ncomms15655] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
S -to-N acyl transfer is a high-yielding chemoselective process for amide bond formation. It is widely utilized by chemists for synthetic applications, including peptide and protein synthesis, chemical modification of proteins, protein-protein ligation and the development of probes and molecular machines. Recent advances in our understanding of S -to-N acyl transfer processes in biology and innovations in methodology for thioester formation and desulfurization, together with an extension of the size of cyclic transition states, have expanded the boundaries of this process well beyond peptide ligation. As the field develops, this chemistry will play a central role in our molecular understanding of Biology. The conversion of thioesters to amides via acyl transfer has become one of the most important synthetic techniques for the chemical synthesis and modification of proteins. This review discusses this S-to-N acyl transfer process, and highlights some of the key applications across chemistry and biology.
Collapse
Affiliation(s)
- Helen M. Burke
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| | | | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| |
Collapse
|
3
|
Dumas A, Lercher L, Spicer CD, Davis BG. Designing logical codon reassignment - Expanding the chemistry in biology. Chem Sci 2015; 6:50-69. [PMID: 28553457 PMCID: PMC5424465 DOI: 10.1039/c4sc01534g] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, the ability to genetically encode unnatural amino acids (UAAs) has evolved rapidly. The programmed incorporation of UAAs into recombinant proteins relies on the reassignment or suppression of canonical codons with an amino-acyl tRNA synthetase/tRNA (aaRS/tRNA) pair, selective for the UAA of choice. In order to achieve selective incorporation, the aaRS should be selective for the designed tRNA and UAA over the endogenous amino acids and tRNAs. Enhanced selectivity has been achieved by transferring an aaRS/tRNA pair from another kingdom to the organism of interest, and subsequent aaRS evolution to acquire enhanced selectivity for the desired UAA. Today, over 150 non-canonical amino acids have been incorporated using such methods. This enables the introduction of a large variety of structures into proteins, in organisms ranging from prokaryote, yeast and mammalian cells lines to whole animals, enabling the study of protein function at a level that could not previously be achieved. While most research to date has focused on the suppression of 'non-sense' codons, recent developments are beginning to open up the possibility of quadruplet codon decoding and the more selective reassignment of sense codons, offering a potentially powerful tool for incorporating multiple amino acids. Here, we aim to provide a focused review of methods for UAA incorporation with an emphasis in particular on the different tRNA synthetase/tRNA pairs exploited or developed, focusing upon the different UAA structures that have been incorporated and the logic behind the design and future creation of such systems. Our hope is that this will help rationalize the design of systems for incorporation of unexplored unnatural amino acids, as well as novel applications for those already known.
Collapse
Affiliation(s)
- Anaëlle Dumas
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Lukas Lercher
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Christopher D Spicer
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Benjamin G Davis
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
4
|
Lee MM, Fekner T, Lu J, Heater BS, Behrman EJ, Zhang L, Hsu PH, Chan MK. Pyrrolysine-Inspired Protein Cyclization. Chembiochem 2014; 15:1769-72. [DOI: 10.1002/cbic.201402129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 11/05/2022]
|
5
|
Verzele D, Madder A. Patchwork protein chemistry: a practitioner's treatise on the advances in synthetic peptide stitchery. Chembiochem 2014; 14:1032-48. [PMID: 23775826 DOI: 10.1002/cbic.201200775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Indexed: 12/22/2022]
Abstract
With the study of peptides and proteins at the heart of many scientific endeavors, the omics era heralded a multitude of opportunities for chemists and biologists alike. Across the interface with life sciences, peptide chemistry plays an indispensable role, and progress made over the past decades now allows proteins to be treated as molecular patchworks stitched together through synthetic tailoring. The continuous elaboration of sophisticated strategies notwithstanding, Merrifield's solid-phase methodology remains a cornerstone of chemical protein design. Although the non-practitioner might misjudge peptide synthesis as trivial, routine, or dull given its long history, we comment here on its many advances, obstacles, and prospects from a practitioner's point of view. While sharing our perspectives through thematic highlights across the literature, this treatise provides an interpretive overview as a guide to novices, and a recap for specialists.
Collapse
Affiliation(s)
- Dieter Verzele
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S4), 9000 Ghent, Belgium.
| | | |
Collapse
|
6
|
Improving bioorthogonal protein ubiquitylation by click reaction. Bioorg Med Chem 2013; 21:3430-5. [PMID: 23611767 DOI: 10.1016/j.bmc.2013.03.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 01/03/2023]
Abstract
Posttranslational modification of proteins with ubiquitin (ubiquitylation) regulates numerous cellular processes. Besides functioning as a signal for proteasomal degradation, ubiquitylation has also non-proteolytic functions by altering the biochemical properties of the modified protein. To investigate the effect(s) of ubiquitylation on the properties of a protein, sufficient amounts of homogenously and well-defined ubiquitylated proteins are required. Here, we report on the elaboration of a method for the generation of high amounts of site-specifically mono-ubiquitylated proteins. Firstly, a one-step affinity purification scheme was developed for ubiquitin containing the unnatural amino acid azidohomoalanine at the C-terminal position. This ubiquitin was conjugated in a click reaction to recombinant DNA polymerase β, equipped with an alkyne function at a distinct position. Secondly, addition of defined amounts of SDS to the reaction significantly improved product formation. With these two technical improvements, we have developed a straight forward procedure for the efficient generation of site-specifically ubiquitylated proteins that can be used to study the effect(s) of ubiquitylation on the activities/properties of a protein.
Collapse
|
7
|
Merkx R, de Bruin G, Kruithof A, van den Bergh T, Snip E, Lutz M, El Oualid F, Ovaa H. Scalable synthesis of γ-thiolysine starting from lysine and a side by side comparison with δ-thiolysine in non-enzymatic ubiquitination. Chem Sci 2013. [DOI: 10.1039/c3sc51599k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
8
|
Haj-Yahya M, Eltarteer N, Ohayon S, Shema E, Kotler E, Oren M, Brik A. N-methylation of isopeptide bond as a strategy to resist deubiquitinases. Angew Chem Int Ed Engl 2012; 51:11535-9. [PMID: 23065695 DOI: 10.1002/anie.201205771] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/23/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Mahmood Haj-Yahya
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
9
|
Haj-Yahya M, Eltarteer N, Ohayon S, Shema E, Kotler E, Oren M, Brik A. N-Methylation of Isopeptide Bond as a Strategy to Resist Deubiquitinases. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Moyal T, Bavikar SN, Karthikeyan SV, Hemantha HP, Brik A. Polymerization behavior of a bifunctional ubiquitin monomer as a function of the nucleophile site and folding conditions. J Am Chem Soc 2012; 134:16085-92. [PMID: 22963682 DOI: 10.1021/ja3078736] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biopolymers with repeating modules composed of either folded peptides or tertiary protein domains are considered some of the basic biomaterials that nature has evolved to optimize for energy efficient synthesis and unique functions. Such biomaterials continue to inspire scientists to mimic their exceptional properties and the ways that nature adopts to prepare them. Ubiquitin chains represent another example of nature's approach to use a protein-repeating module to prepare functionally important biopolymers. In the current work, we utilize a novel synthetic strategy to prepare bifunctional ubiquitin monomers having a C-terminal thioester and a nucleophilic 1,2-aminothiol at a desired position to examine their polymerization products under different conditions. Our study reveals that such analogues, when subjected to polymerization conditions under different folding states, afford distinct patterns of polymerization products where both the dynamic and the tertiary structures of the chains play important roles in such processes. Moreover, we also show that the presence of a specific ubiquitin-binding domain, which binds specifically to some of these chains, could interfere selectively with the polymerization outcome. Our study represents the first example of examining the polymerization of designed and synthetic repeating modules based on tertiary protein domains and affords early lessons in the design and synthesis of biomaterial. In regards to the ubiquitin system, our study may have implications on the ease of synthesis of ubiquitin chains with varying lengths and types for structural and functional analyses. Importantly, such an approach could also assist in understanding the enzymatic machinery and the factors controlling the assembly of these chains with a desired length.
Collapse
Affiliation(s)
- Tal Moyal
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
11
|
Ogunkoya AO, Pattabiraman VR, Bode JW. Sequential α-ketoacid-hydroxylamine (KAHA) ligations: synthesis of C-terminal variants of the modifier protein UFM1. Angew Chem Int Ed Engl 2012; 51:9693-7. [PMID: 22915333 DOI: 10.1002/anie.201204144] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Ayodele O Ogunkoya
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang Pauli Strasse 10, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
12
|
Ogunkoya AO, Pattabiraman VR, Bode JW. Sequentielle α-Ketosäurehydroxylamin(KAHA)-Ligationen: Synthese C-terminaler Varianten des Modifikationsproteins UFM1. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
|
14
|
Spasser L, Brik A. Chemistry and Biology of the Ubiquitin Signal. Angew Chem Int Ed Engl 2012; 51:6840-62. [DOI: 10.1002/anie.201200020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Indexed: 01/07/2023]
|
15
|
Valkevich EM, Guenette RG, Sanchez NA, Chen YC, Ge Y, Strieter ER. Forging isopeptide bonds using thiol-ene chemistry: site-specific coupling of ubiquitin molecules for studying the activity of isopeptidases. J Am Chem Soc 2012; 134:6916-9. [PMID: 22497214 DOI: 10.1021/ja300500a] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemical methods for modifying proteins can enable studies aimed at uncovering biochemical function. Herein, we describe the use of thiol-ene coupling (TEC) chemistry to report on the function of branched (also referred to as forked) ubiquitin trimers. We show how site-specific isopeptide (Nε-Gly-L-homothiaLys) bonds are forged between two molecules of Ub, demonstrating the power of TEC in protein conjugation. Moreover, we demonstrate that the Nε-Gly-L-homothiaLys isopeptide bond is processed to a similar extent by deubiquitinases (DUBs) as that of a native Nε-Gly-L-Lys isopeptide bond, thereby establishing the utility of TEC in the generation of Ub-Ub linkages. TEC is then applied to the synthesis of branched Ub trimers. Interrogation of these branched derivatives with DUBs reveals that the relative orientation of the two Ub units has a dramatic impact on how they are hydrolyzed. In particular, cleavage of K48C-linkages is suppressed when the central Ub unit is also conjugated through K6C, whereas cleavage proceeds normally when the central unit is conjugated through either K11C or K63C. The results of this work presage a role for branched polymeric Ub chains in regulating linkage-selective interactions.
Collapse
Affiliation(s)
- Ellen M Valkevich
- Department of Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Protein ubiquitination, the covalent attachment of ubiquitin to target proteins, has emerged as one of the most prevalent posttranslational modifications (PTMs), regulating nearly every cellular pathway. The diversity of signaling associated with this particular PTM stems from the myriad ways in which a target protein can be modified by ubiquitin, e.g., monoubiquitin, multi-monoubiquitin, and polyubiquitin linkages. In this Review, we focus on developments in both enzymatic and chemical methods that engender ubiquitin with new chemical and physical properties. Moreover, we highlight how these methods have enabled studies directed toward (i) characterizing enzymes responsible for reversing the ubiquitin modification, (ii) understanding the influence of ubiquitin on protein function and crosstalk with other PTMs, and (iii) uncovering the impact of polyubiquitin chain linkage and length on downstream signaling events.
Collapse
Affiliation(s)
- Eric R. Strieter
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| | - David A. Korasick
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| |
Collapse
|
17
|
Bavikar SN, Spasser L, Haj-Yahya M, Karthikeyan SV, Moyal T, Ajish Kumar KS, Brik A. Chemical Synthesis of Ubiquitinated Peptides with Varying Lengths and Types of Ubiquitin Chains to Explore the Activity of Deubiquitinases. Angew Chem Int Ed Engl 2011; 51:758-63. [DOI: 10.1002/anie.201106430] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 10/12/2011] [Indexed: 01/27/2023]
|
18
|
Bavikar SN, Spasser L, Haj-Yahya M, Karthikeyan SV, Moyal T, Ajish Kumar KS, Brik A. Chemical Synthesis of Ubiquitinated Peptides with Varying Lengths and Types of Ubiquitin Chains to Explore the Activity of Deubiquitinases. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106430] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Sommer S, Weikart ND, Brockmeyer A, Janning P, Mootz HD. Expanded Click Conjugation of Recombinant Proteins with Ubiquitin-Like Modifiers Reveals Altered Substrate Preference of SUMO2-Modified Ubc9. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102531] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Sommer S, Weikart ND, Brockmeyer A, Janning P, Mootz HD. Expanded click conjugation of recombinant proteins with ubiquitin-like modifiers reveals altered substrate preference of SUMO2-modified Ubc9. Angew Chem Int Ed Engl 2011; 50:9888-92. [PMID: 21898723 DOI: 10.1002/anie.201102531] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/29/2011] [Indexed: 11/08/2022]
Abstract
Wrestling with SUMO: the chemical conjugation of proteins with small ubiquitin-like modifiers (SUMO) can be achieved by a copper(I)-catalyzed cycloaddition and unnatural amino acid mutagenesis. This approach overcomes previous restrictions related to the primary sequence of proteins and coupling conditions. Moreover, biochemical data suggests that this triazole linkage presents the modifier in a proper distance and orientation relative to the target protein.
Collapse
Affiliation(s)
- Stefanie Sommer
- Institute of Biochemistry-University of Muenster, Münster, Germany
| | | | | | | | | |
Collapse
|
21
|
Kumar KSA, Bavikar SN, Spasser L, Moyal T, Ohayon S, Brik A. Total chemical synthesis of a 304 amino acid K48-linked tetraubiquitin protein. Angew Chem Int Ed Engl 2011; 50:6137-41. [PMID: 21591043 DOI: 10.1002/anie.201101920] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Indexed: 01/13/2023]
Affiliation(s)
- K S Ajish Kumar
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Kumar KSA, Bavikar SN, Spasser L, Moyal T, Ohayon S, Brik A. Total Chemical Synthesis of a 304 Amino Acid K48-Linked Tetraubiquitin Protein. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101920] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
The pyrrolysine translational machinery as a genetic-code expansion tool. Curr Opin Chem Biol 2011; 15:387-91. [PMID: 21507706 DOI: 10.1016/j.cbpa.2011.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/20/2022]
Abstract
The discovery of pyrrolysine not only expanded the set of the known proteinogenic amino acids but also revealed unusual features of its encoding mechanism. The engagement of a canonical stop codon and a unique aminoacyl-tRNA synthetase-tRNA pair that can be used to accommodate a broad range of unnatural amino acids while maintaining strict orthogonality in a variety of prokaryotic and eukaryotic expression systems has proven an invaluable combination. Within a few years since its properties were elucidated, the pyrrolysine translational machinery has become a popular choice for the synthesis of recombinant proteins bearing a wide variety of otherwise hard-to-introduce functional groups. It is also central to the development of new synthetic strategies that rely on stop-codon suppression.
Collapse
|