1
|
Wu J, Gu Z, Modica JA, Chen S, Mrksich M, Voth GA. Megamolecule Self-Assembly Networks: A Combined Computational and Experimental Design Strategy. J Am Chem Soc 2024; 146:30553-30564. [PMID: 39451142 DOI: 10.1021/jacs.4c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This work describes the use of computational strategies to design megamolecule building blocks for the self-assembly of lattice networks. The megamolecules are prepared by attaching four Cutinase-SnapTag fusion proteins (CS fusions) to a four-armed linker, followed by functionalizing each fusion with a terpyridine linker. This functionality is designed to participate in a metal-mediated self-assembly process to give networks. This article describes a simulation-guided strategy for the design of megamolecules to optimize the peptide linker in the fusion protein to give conformations that are best suited for self-assembly and therefore streamlines the typically time-consuming and labor-intensive experimental process. We designed 11 candidate megamolecules and identified the most promising linker, (EAAAK)2, along with the optimal experimental conditions through a combination of all-atom molecular dynamics, enhanced sampling, and larger-scale coarse-grained molecular dynamics simulations. Our simulation findings were validated and found to be consistent with the experimental results. Significantly, this study offers valuable insight into the self-assembly of megamolecule networks and provides a novel and general strategy for large biomolecular material designs by using systematic bottom-up coarse-grained simulations.
Collapse
Affiliation(s)
- Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zhaoyi Gu
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin A Modica
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sijia Chen
- Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Milan Mrksich
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Sridhar S, Modica JA, Sykora DJ, Berns EJ, Mrksich M. Synthesis and Activity of T-Cell Tumor-Directing MegaMolecules. J Am Chem Soc 2024; 146:26801-26807. [PMID: 39167468 DOI: 10.1021/jacs.4c07377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This paper describes the synthesis, characterization, and functional activity of 26 MegaMolecule-based bispecific antibody mimics for T-cell redirection toward HER2+ cancer cells. The work reports functional bispecific MegaMolecules that bind both receptor targets, and recruit and activate T-cells resulting in lysis of the target tumor cells. Changing the orientation of linkage between Fabs against either HER2 or CD3ε results in an approximately 150-fold range in potency. Increasing scaffold valency from Fab dimers up to tetramers improves the potency of the antibody mimics up to 5-fold, but with diminishing returns in effective dose beyond trimeric formats. Antibody mimics that present either one or two Fabs against either receptor target allows for initial engagement of one cell type over the other. Finally, the antibody mimics significantly reduce HER2+ tumor volumes in a humanized xenograft model of breast cancer.
Collapse
Affiliation(s)
- Sraeyes Sridhar
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin A Modica
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Daniel J Sykora
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Eric J Berns
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Cell & Developmental Biology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| |
Collapse
|
3
|
Zhou S, Wei Y. Kaleidoscope megamolecules synthesis and application using self-assembly technology. Biotechnol Adv 2023; 65:108147. [PMID: 37023967 DOI: 10.1016/j.biotechadv.2023.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/20/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The megamolecules with high ordered structures play an important role in chemical biology and biomedical engineering. Self-assembly, a long-discovered but very appealing technique, could induce many reactions between biomacromolecules and organic linking molecules, such as an enzyme domain and its covalent inhibitors. Enzyme and its small-molecule inhibitors have achieved many successes in medical application, which realize the catalysis process and theranostic function. By employing the protein engineering technology, the building blocks of enzyme fusion protein and small molecule linker can be assembled into a novel architecture with the specified organization and conformation. Molecular level recognition of enzyme domain could provide both covalent reaction sites and structural skeleton for the functional fusion protein. In this review, we will discuss the range of tools available to combine functional domains by using the recombinant protein technology, which can assemble them into precisely specified architectures/valences and develop the kaleidoscope megamolecules for catalytic and medical application.
Collapse
Affiliation(s)
- Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
4
|
Ryan A, Shade O, Bardhan A, Bartnik A, Deiters A. Quantitative Analysis and Optimization of Site-Specific Protein Bioconjugation in Mammalian Cells. Bioconjug Chem 2022; 33:2361-2369. [PMID: 36459098 DOI: 10.1021/acs.bioconjchem.2c00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Despite a range of covalent protein modifications, few techniques exist for quantification of protein bioconjugation in cells. Here, we describe a novel method for quantifying in cellulo protein bioconjugation through covalent bond formation with HaloTag. This approach utilizes unnatural amino acid (UAA) mutagenesis to selectively install a small and bioorthogonally reactive handle onto the surface of a protein. We utilized the fast kinetics and high selectivity of inverse electron-demand Diels-Alder cycloadditions to evaluate reactions of tetrazine phenylalanine (TetF) with strained trans-cyclooctene-chloroalkane (sTCO-CA) and trans-cyclooctene lysine (TCOK) with tetrazine-chloroalkane (Tet-CA). Following bioconjugation, the chloroalkane ligand is exposed for labeling by the HaloTag enzyme, allowing for straightforward quantification of bioconjugation via simple western blot analysis. We demonstrate the versatility of this tool for quickly and accurately determining the bioconjugation efficiency of different UAA/chloroalkane pairs and for different sites on different proteins of interest, including EGFP and the estrogen-related receptor ERRα.
Collapse
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Aleksander Bartnik
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Winegar PH, Figg CA, Teplensky MH, Ramani N, Mirkin CA. Modular Nucleic Acid Scaffolds for Synthesizing Monodisperse and Sequence-Encoded Antibody Oligomers. Chem 2022; 8:3018-3030. [PMID: 36405374 PMCID: PMC9674055 DOI: 10.1016/j.chempr.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesizing protein oligomers that contain exact numbers of multiple different proteins in defined architectures is challenging. DNA-DNA interactions can be used to program protein assembly into oligomers; however, existing methods require changes to DNA design to achieve different numbers and oligomeric sequences of proteins. Herein, we develop a modular DNA scaffold that uses only six synthetic oligonucleotides to organize proteins into defined oligomers. As a proof-of-concept, model proteins (antibodies) are oligomerized into dimers and trimers, where antibody function is retained. Illustrating the modularity of this technique, dimer and trimer building blocks are then assembled into pentamers containing three different antibodies in an exact stoichiometry and oligomeric sequence. In sum, this report describes a generalizable method for organizing proteins into monodisperse, sequence-encoded oligomers using DNA. This advance will enable studies into how oligomeric protein sequences affect material properties in areas spanning pharmaceutical development, cascade catalysis, synthetic photosynthesis, and membrane transport.
Collapse
Affiliation(s)
- Peter H. Winegar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- These authors contributed equally
| | - C. Adrian Figg
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- These authors contributed equally
| | - Michelle H. Teplensky
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Namrata Ramani
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Lead contact
| |
Collapse
|
6
|
Chen J, Huang C, Zhao W, Ren J, Ji F, Jia L. SnoopLigase Enables Highly Efficient Generation of C-C-Linked Bispecific Nanobodies Targeting TNF-α and IL-17A. Bioconjug Chem 2022; 33:1446-1455. [PMID: 35938675 DOI: 10.1021/acs.bioconjchem.2c00143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bispecific antibodies (bis-Nbs) have been extensively developed since the concept was devised over the decades. Taking advantage of the superior characteristics of nanobodies, bis-Nbs exhibit an emerging tendency to become the new generation of research and diagnostic tools. Traditional strategies to connect the homo- or heterogeneous monomers are commonly applied, but there are still technical issues to generate the bispecific molecules as efficiently as designed. Here, we utilize SnoopLigase to directly tether the C terminus (C-C) of the tagged nanobodies against tumor necrosis factor-α (TNF-α) and interleukin-17A (IL-17A). Under optimal conditions, the yield of C-C-linked bis-Nbs can reach as high as 70% due to the existence of SnoopLigase. The prepared bis-Nbs possessed similar or even higher affinity as the monomers and significantly inhibited the proliferation and migration of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) induced by TNF-α and IL-17A. This study provides an innovative route for using SnoopLigase to realize a highly efficient generation of C-C-linked bis-Nbs. The approach can be applied to different and multicomponent systems for their potential applications in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Jiewen Chen
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Chundong Huang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Wei Zhao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
7
|
Parker KA, Ribet S, Kimmel BR, Dos Reis R, Mrksich M, Dravid VP. Scanning Transmission Electron Microscopy in a Scanning Electron Microscope for the High-Throughput Imaging of Biological Assemblies. Biomacromolecules 2022; 23:3235-3242. [PMID: 35881504 DOI: 10.1021/acs.biomac.2c00323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron microscopy of soft and biological materials, or "soft electron microscopy", is essential to the characterization of macromolecules. Soft microscopy is governed by enhancing contrast while maintaining low electron doses, and sample preparation and imaging methodologies are driven by the length scale of features of interest. While cryo-electron microscopy offers the highest resolution, larger structures can be characterized efficiently and with high contrast using low-voltage electron microscopy by performing scanning transmission electron microscopy in a scanning electron microscope (STEM-in-SEM). Here, STEM-in-SEM is demonstrated for a four-lobed protein assembly where the arrangement of the proteins in the construct must be examined. STEM image simulations show the theoretical contrast enhancement at SEM-level voltages for unstained structures, and experimental images with multiple STEM modes exhibit the resolution possible for negative-stained proteins. This technique can be extended to complex protein assemblies, larger structures such as cell sections, and hybrid materials, making STEM-in-SEM a valuable high-throughput imaging method.
Collapse
Affiliation(s)
- Kelly A Parker
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephanie Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Blaise R Kimmel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Kimmel BR, Mrksich M. Development of an Enzyme-Inhibitor Reaction Using Cellular Retinoic Acid Binding Protein II for One-Pot Megamolecule Assembly. Chemistry 2021; 27:17843-17848. [PMID: 34713526 DOI: 10.1002/chem.202103059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 12/19/2022]
Abstract
This paper presents an enzyme building block for the assembly of megamolecules. The system is based on the inhibition of the human-derived cellular retinoic acid binding protein II (CRABP2) domain. We synthesized a synthetic retinoid bearing an arylfluorosulfate group, which uses sulfur fluoride exchange click chemistry to covalently inhibit CRABP2. We conjugated both the inhibitor and a fluorescein tag to an oligo(ethylene glycol) backbone and measured a second-order rate constant for the protein inhibition reaction of approximately 3,600 M-1 s-1 . We used this new enzyme-inhibitor pair to assemble multi-protein structures in one-pot reactions using three orthogonal assembly chemistries to demonstrate exact control over the placement of protein domains within a single, homogeneous molecule. This work enables a new dimension of control over specificity, orientation, and stoichiometry of protein domains within atomically precise nanostructures.
Collapse
Affiliation(s)
- Blaise R Kimmel
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Milan Mrksich
- Department of Biomedical Engineering, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
9
|
Zhou S, He P, Dhindwal S, Grum-Tokars VL, Li Y, Parker K, Modica JA, Bleher R, Dos Reis R, Zuchniarz J, Dravid VP, Voth GA, Roux B, Mrksich M. Synthesis, Characterization, and Simulation of Four-Armed Megamolecules. Biomacromolecules 2021; 22:2363-2372. [PMID: 33979120 DOI: 10.1021/acs.biomac.1c00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes the synthesis, characterization, and modeling of a series of molecules having four protein domains attached to a central core. The molecules were assembled with the "megamolecule" strategy, wherein enzymes react with their covalent inhibitors that are substituted on a linker. Three linkers were synthesized, where each had four oligo(ethylene glycol)-based arms terminated in a para-nitrophenyl phosphonate group that is a covalent inhibitor for cutinase. This enzyme is a serine hydrolase and reacts efficiently with the phosphonate to give a new ester linkage at the Ser-120 residue in the active site of the enzyme. Negative-stain transmission electron microscopy (TEM) images confirmed the architecture of the four-armed megamolecules. These cutinase tetramers were also characterized by X-ray crystallography, which confirmed the active-site serine-phosphonate linkage by electron-density maps. Molecular dynamics simulations of the tetracutinase megamolecules using three different force field setups were performed and compared with the TEM observations. Using the Amberff99SB-disp + pH7 force field, the two-dimensional projection distances of the megamolecules were found to agree with the measured dimensions from TEM. The study described here, which combines high-resolution characterization with molecular dynamics simulations, will lead to a comprehensive understanding of the molecular structures and dynamics for this new class of molecules.
Collapse
Affiliation(s)
- Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Peng He
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sonali Dhindwal
- Department of Materials Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Valerie L Grum-Tokars
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, United States
| | - Ying Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Kelly Parker
- Department of Materials Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin A Modica
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Reiner Bleher
- Department of Materials Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Roberto Dos Reis
- Department of Materials Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua Zuchniarz
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vinayak P Dravid
- Department of Materials Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Milan Mrksich
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Metcalf KJ, Kimmel BR, Sykora DJ, Modica JA, Parker KA, Berens E, Dai R, Dravid VP, Werb Z, Mrksich M. Synthetic Tuning of Domain Stoichiometry in Nanobody-Enzyme Megamolecules. Bioconjug Chem 2020; 32:143-152. [PMID: 33301672 DOI: 10.1021/acs.bioconjchem.0c00578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This paper presents a method to synthetically tune atomically precise megamolecule nanobody-enzyme conjugates for prodrug cancer therapy. Previous efforts to create heterobifunctional protein conjugates suffered from heterogeneity in domain stoichiometry, which in part led to the failure of antibody-enzyme conjugates in clinical trials. We used the megamolecule approach to synthesize anti-HER2 nanobody-cytosine deaminase conjugates with tunable numbers of nanobody and enzyme domains in a single, covalent molecule. Linking two nanobody domains to one enzyme domain improved avidity to a human cancer cell line by 4-fold but did not increase cytotoxicity significantly due to lowered enzyme activity. In contrast, a megamolecule composed of one nanobody and two enzyme domains resulted in an 8-fold improvement in the catalytic efficiency and increased the cytotoxic effect by over 5-fold in spheroid culture, indicating that the multimeric structure allowed for an increase in local drug activation. Our work demonstrates that the megamolecule strategy can be used to study structure-function relationships of protein conjugate therapeutics with synthetic control of protein domain stoichiometry.
Collapse
Affiliation(s)
- Kevin J Metcalf
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Blaise R Kimmel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel J Sykora
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin A Modica
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kelly A Parker
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric Berens
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, United States
| | - Raymond Dai
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, United States
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Parker K, Zhou S, Kimmel B, Dhindwal S, Bleher R, Hampton C, Drummy L, Mrksich M, Dravid V. Soft Microscopy: Strategies for Contrast Enhancement of Macromolecules. MICROSCOPY AND MICROANALYSIS 2020; 26:1026-1028. [DOI: 10.1017/s1431927620016712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
12
|
Modica JA, Iderzorig T, Mrksich M. Design and Synthesis of Megamolecule Mimics of a Therapeutic Antibody. J Am Chem Soc 2020; 142:13657-13661. [PMID: 32706963 DOI: 10.1021/jacs.0c05093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This communication describes the design, synthesis, and biological activity of a megamolecule mimic of an anti-HER2 antibody. The antibody mimic was prepared by linking two Fabs from the therapeutic antibody trastuzumab, which are fused through the heavy chain variable domain to either cutinase or SnapTag, with a linker terminated in an irreversible inhibitor for each enzyme. This mimic binds HER2 with comparable avidity to trastuzumab, has similar activity in a cell-based assay, and can arrest tumor growth in a mouse xenograft BT474 tumor model. A panel of 16 bivalent anti-HER2 antibodies were prepared wherein each varied in the orientation of the fusion domain on the Fabs. The analogs displayed a range of cytotoxic activity, and surprisingly, the most active mimic binds to cells with a 10-fold lower avidity than the least active variant suggesting that structure plays a large role in their efficacy. This work suggests that the megamolecule approach can be used to prepare antibody mimics having a broad structural diversity.
Collapse
Affiliation(s)
- Justin A Modica
- Northwestern University, Departments of Chemistry and Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tsatsral Iderzorig
- Northwestern University, Departments of Chemistry and Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Northwestern University, Departments of Chemistry and Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Kimmel BR, Modica JA, Parker K, Dravid V, Mrksich M. Solid-Phase Synthesis of Megamolecules. J Am Chem Soc 2020; 142:4534-4538. [PMID: 32105451 PMCID: PMC8672447 DOI: 10.1021/jacs.9b12003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This paper presents a solid-phase strategy to efficiently assemble multiprotein scaffolds-known as megamolecules-without the need for protecting groups and with precisely defined nanoscale architectures. The megamolecules are assembled through sequential reactions of linkers that present irreversible inhibitors for enzymes and fusion proteins containing the enzyme domains. Here, a fusion protein containing an N-terminal cutinase and a C-terminal SnapTag domain react with an ethyl p-nitrophenyl phosphonate (pNPP) or a chloro-pyrimidine (CP) group, respectively, to give covalent products. By starting with resin beads that are functionalized with benzylguanine, a series of reactions lead to linear, branched, and dendritic structures that are released from the solid support by addition of TEV protease and that have sizes up to approximately 25 nm.
Collapse
|
14
|
Taylor EL, Metcalf KJ, Carlotti B, Lai CT, Modica JA, Schatz GC, Mrksich M, Goodson T. Long-Range Energy Transfer in Protein Megamolecules. J Am Chem Soc 2018; 140:15731-15743. [PMID: 30375862 PMCID: PMC6710013 DOI: 10.1021/jacs.8b08208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this investigation, we report evidence for energy transfer in new protein-based megamolecules with tunable distances between donor and acceptor fluorescent proteins. The megamolecules used in this work are monodisperse oligomers, with molecular weights of ∼100-300 kDa and lengths of ∼5-20 nm, and are precisely defined structures of fusion protein building blocks and covalent cross-linkers. Such structures are promising because the study of energy transfer in protein complexes is usually difficult in this long length regime due to synthetic limitations. We incorporated fluorescent proteins into the megamolecule structure and varied the separation distance between donor and acceptor by changing the length of the cross-linker in dimer conjugates and inserting nonfluorescent spacer proteins to create oligomers. Two-photon absorption measurements demonstrated strong coupling between donor and acceptor dipoles in the megamolecules. For the dimer systems, no effect of the cross-linker length on energy transfer efficiency was observed with the steady-state fluorescence investigation. However, for the same dimer conjugates, energy transfer rates decreased upon increasing cross-linker length, as evaluated by fluorescence up-conversion. Molecular dynamics simulations were used to rationalize the results, providing quantitative agreement between measured and calculated energy transfer lengths for steady-state results, and showing that the differences between the time-resolved and steady-state measurements arise from the long time scale for large-scale fluctuations in the megamolecule structure. Our results show an increase in energy transfer length with increasing megamolecule size. This is evidence for long-range energy transfer in large protein megamolecules.
Collapse
Affiliation(s)
- Elijah L. Taylor
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin J. Metcalf
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benedetta Carlotti
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Cheng-Tsung Lai
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin A. Modica
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Affiliation(s)
- Justin A. Modica
- Departments of Chemistry and Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60201, United States
| | - Yao Lin
- Departments of Chemistry and Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60201, United States
| | - Milan Mrksich
- Departments of Chemistry and Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60201, United States
| |
Collapse
|
16
|
|
17
|
Abstract
Programmed connection of amino acids or nucleotides into chains introduced a revolution in control of biological function. Reacting proteins together is more complex because of the number of reactive groups and delicate stability. Here we achieved sequence-programmed irreversible connection of protein units, forming polyprotein teams by sequential amidation and transamidation. SpyTag peptide is engineered to spontaneously form an isopeptide bond with SpyCatcher protein. By engineering the adhesin RrgA from Streptococcus pneumoniae, we developed the peptide SnoopTag, which formed a spontaneous isopeptide bond to its protein partner SnoopCatcher with >99% yield and no cross-reaction to SpyTag/SpyCatcher. Solid-phase attachment followed by sequential SpyTag or SnoopTag reaction between building-blocks enabled iterative extension. Linear, branched, and combinatorial polyproteins were synthesized, identifying optimal combinations of ligands against death receptors and growth factor receptors for cancer cell death signal activation. This simple and modular route to programmable "polyproteams" should enable exploration of a new area of biological space.
Collapse
|
18
|
Abstract
![]()
Exploration of protein function and
interaction is critical for
discovering links among genomics, proteomics, and disease state; yet,
the immense complexity of proteomics found in biological systems currently
limits our investigational capacity. Although affinity and autofluorescent
tags are widely employed for protein analysis, these methods have
been met with limited success because they lack specificity and require
multiple fusion tags and genetic constructs. As an alternative approach,
the innovative HaloTag protein fusion platform allows protein function
and interaction to be comprehensively analyzed using a single genetic
construct with multiple capabilities. This is accomplished using a
simplified process, in which a variable HaloTag ligand binds rapidly
to the HaloTag protein (usually linked to the protein of interest)
with high affinity and specificity. In this review, we examine all
current applications of the HaloTag technology platform for biomedical
applications, such as the study of protein isolation and purification,
protein function, protein–protein and protein–DNA interactions,
biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the
HaloTag platform are briefly discussed along with potential future
applications.
Collapse
Affiliation(s)
- Christopher G England
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Haiming Luo
- ‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,§University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
19
|
Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Nat Commun 2015; 6:7134. [PMID: 25972078 PMCID: PMC4479010 DOI: 10.1038/ncomms8134] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/08/2015] [Indexed: 02/08/2023] Open
Abstract
Supramolecular protein assemblies offer novel nanoscale architectures with molecular precision and unparalleled functional diversity. A key challenge, however, is to create precise nano-assemblies of functional proteins with both defined structures and a controlled number of protein-building blocks. Here we report a series of supramolecular green fluorescent protein oligomers that are assembled in precise polygonal geometries and prepared in a monodisperse population. Green fluorescent protein is engineered to be self-assembled in cells into oligomeric assemblies that are natively separated in a single-protein resolution by surface charge manipulation, affording monodisperse protein (nano)polygons from dimer to decamer. Several functional proteins are multivalently displayed on the oligomers with controlled orientations. Spatial arrangements of protein oligomers and displayed functional proteins are directly visualized by a transmission electron microscope. By employing our functional protein assemblies, we provide experimental insight into multivalent protein–protein interactions and tools to manipulate receptor clustering on live cell surfaces. Supramolecular protein assemblies can provide novel nano-architectures with diverse structures and functions. Here, the authors report a fabrication strategy for a series of monodisperse protein oligomers, which allows valency-controlled display of various functional proteins.
Collapse
|
20
|
Matsunaga R, Yanaka S, Nagatoishi S, Tsumoto K. Hyperthin nanochains composed of self-polymerizing protein shackles. Nat Commun 2014; 4:2211. [PMID: 23884289 DOI: 10.1038/ncomms3211] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022] Open
Abstract
Protein fibrils are expected to have applications as functional nanomaterials because of their sophisticated structures; however, nanoscale ordering of the functional units of protein fibrils remains challenging. Here we design a series of self-polymerizing protein monomers, referred to as protein shackles, derived from modified recombinant subunits of pili from Streptococcus pyogenes. The monomers polymerize into nanochains through spontaneous irreversible covalent bond formation. We design the protein shackles so that their reactions can be controlled by altering redox conditions, which affect disulphide bond formation between engineered cysteine residues. The interaction between the monomers improves their polymerization reactivity and determines morphologies of the polymers. In addition, green fluorescent protein-tagged protein shackles can polymerize, indicating proteins can be stably attached to the nanochains with its functionality preserved. Furthermore we demonstrate that a molecular-recognizable nanochain binds to its partner with an enhanced binding ability in solution. These characteristics are expected to be applied for novel protein nanomaterials.
Collapse
Affiliation(s)
- Ryo Matsunaga
- The Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|