1
|
Mendive‐Tapia L, Mendive‐Tapia D, Zhao C, Gordon D, Benson S, Bromley MJ, Wang W, Wu J, Kopp A, Ackermann L, Vendrell M. Rationales Design von Phe-BODIPY-Aminosäuren als fluorogene Bausteine für den peptidbasierten Nachweis von Candida-Infektionen im Harntrakt. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117218. [PMID: 38505242 PMCID: PMC10946803 DOI: 10.1002/ange.202117218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/08/2022]
Abstract
AbstractPilzinfektionen, die durch Candida‐Arten verursacht werden, gehören zu den häufigsten Infektionen bei Krankenhauspatienten. Die derzeitigen Methoden zum Nachweis von Candida‐Pilzzellen in klinischen Proben beruhen jedoch auf zeitaufwändigen Analysen, die eine schnelle und zuverlässige Diagnose erschweren. In diesem Beitrag beschreiben wir die rationale Entwicklung neuer Phe‐BODIPY‐Aminosäuren als kleine fluorogene Bausteine und ihre Anwendung zur Erzeugung fluoreszierender antimikrobieller Peptide für die schnelle Markierung von Candida‐Zellen im Urin. Mit Hilfe von computergestützten Berechnungen haben wir das fluorogene Verhalten von BODIPY‐substituierten aromatischen Aminosäuren analysiert und Bioaktivitäts‐ und konfokale Mikroskopieexperimente bei verschiedenen Stämmen durchgeführt, um den Nutzen und die Vielseitigkeit von Peptiden mit Phe‐BODIPYs zu bestätigen. Schließlich haben wir einen einfachen und sensitiven fluoreszensbasierten Test zum Nachweis von Candida albicans in menschlichen Urinproben entwickelt.
Collapse
Affiliation(s)
- Lorena Mendive‐Tapia
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - David Mendive‐Tapia
- Abteilung Theoretische ChemiePhysikalisch-Chemisches InstitutUniversität Heidelberg69120HeidelbergDeutschland
| | - Can Zhao
- Manchester Fungal Infection GroupAbteilung für EvolutionInfektion und GenomikM139NTManchesterGroßbritannien
| | - Doireann Gordon
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - Sam Benson
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - Michael J. Bromley
- Manchester Fungal Infection GroupAbteilung für EvolutionInfektion und GenomikM139NTManchesterGroßbritannien
| | - Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Marc Vendrell
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| |
Collapse
|
2
|
Mendive‐Tapia L, Mendive‐Tapia D, Zhao C, Gordon D, Benson S, Bromley MJ, Wang W, Wu J, Kopp A, Ackermann L, Vendrell M. Rational Design of Phe-BODIPY Amino Acids as Fluorogenic Building Blocks for Peptide-Based Detection of Urinary Tract Candida Infections. Angew Chem Int Ed Engl 2022; 61:e202117218. [PMID: 35075763 PMCID: PMC9305947 DOI: 10.1002/anie.202117218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Fungal infections caused by Candida species are among the most prevalent in hospitalized patients. However, current methods for the detection of Candida fungal cells in clinical samples rely on time-consuming assays that hamper rapid and reliable diagnosis. Herein, we describe the rational development of new Phe-BODIPY amino acids as small fluorogenic building blocks and their application to generate fluorescent antimicrobial peptides for rapid labelling of Candida cells in urine. We have used computational methods to analyse the fluorogenic behaviour of BODIPY-substituted aromatic amino acids and performed bioactivity and confocal microscopy experiments in different strains to confirm the utility and versatility of peptides incorporating Phe-BODIPYs. Finally, we have designed a simple and sensitive fluorescence-based assay for the detection of Candida albicans in human urine samples.
Collapse
Affiliation(s)
| | - David Mendive‐Tapia
- Department Theoretische ChemiePhysikalisch-Chemisches InstitutUniversität Heidelberg69120HeidelbergGermany
| | - Can Zhao
- Manchester Fungal Infection GroupDivision of EvolutionInfection and GenomicsUniversity of ManchesterM139NTManchesterUK
| | - Doireann Gordon
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Michael J. Bromley
- Manchester Fungal Infection GroupDivision of EvolutionInfection and GenomicsUniversity of ManchesterM139NTManchesterUK
| | - Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
3
|
Fluorescent amino acids as versatile building blocks for chemical biology. Nat Rev Chem 2020; 4:275-290. [PMID: 37127957 DOI: 10.1038/s41570-020-0186-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein-protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging.
Collapse
|
4
|
Link AJ, Niu X, Weaver CM, Jennings JL, Duncan DT, McAfee KJ, Sammons M, Gerbasi VR, Farley AR, Fleischer TC, Browne CM, Samir P, Galassie A, Boone B. Targeted Identification of Protein Interactions in Eukaryotic mRNA Translation. Proteomics 2020; 20:e1900177. [PMID: 32027465 DOI: 10.1002/pmic.201900177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/13/2019] [Indexed: 11/09/2022]
Abstract
To identify protein-protein interactions and phosphorylated amino acid sites in eukaryotic mRNA translation, replicate TAP-MudPIT and control experiments are performed targeting Saccharomyces cerevisiae genes previously implicated in eukaryotic mRNA translation by their genetic and/or functional roles in translation initiation, elongation, termination, or interactions with ribosomal complexes. Replicate tandem affinity purifications of each targeted yeast TAP-tagged mRNA translation protein coupled with multidimensional liquid chromatography and tandem mass spectrometry analysis are used to identify and quantify copurifying proteins. To improve sensitivity and minimize spurious, nonspecific interactions, a novel cross-validation approach is employed to identify the most statistically significant protein-protein interactions. Using experimental and computational strategies discussed herein, the previously described protein composition of the canonical eukaryotic mRNA translation initiation, elongation, and termination complexes is calculated. In addition, statistically significant unpublished protein interactions and phosphorylation sites for S. cerevisiae's mRNA translation proteins and complexes are identified.
Collapse
Affiliation(s)
- Andrew J Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Connie M Weaver
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jennifer L Jennings
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Dexter T Duncan
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - K Jill McAfee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Morgan Sammons
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Vince R Gerbasi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Adam R Farley
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Tracey C Fleischer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | | | - Parimal Samir
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Allison Galassie
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Braden Boone
- Department of Bioinformatics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
5
|
Yokoo H, Kagechika H, Ohsaki A, Hirano T. A Polarity‐Sensitive Fluorescent Amino Acid and its Incorporation into Peptides for the Ratiometric Detection of Biomolecular Interactions. Chempluschem 2019; 84:1716-1719. [DOI: 10.1002/cplu.201900489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/04/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hidetomo Yokoo
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Ayumi Ohsaki
- College of Humanities and SciencesNihon University 3-25-40 Sakurajosui, Setagaya-ku Tokyo 156-8550 Japan
| | - Tomoya Hirano
- Osaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| |
Collapse
|
6
|
Bag SS, Jana S, Pradhan MK. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA. Bioorg Med Chem 2016; 24:3579-95. [DOI: 10.1016/j.bmc.2016.05.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 02/03/2023]
|
7
|
Wang W, Zhu L, Hirano Y, Kariminavargani M, Tada S, Zhang G, Uzawa T, Zhang D, Hirose T, Taiji M, Ito Y. Fluorogenic Enhancement of an in Vitro-Selected Peptide Ligand by Replacement of a Fluorescent Group. Anal Chem 2016; 88:7991-7. [DOI: 10.1021/acs.analchem.6b01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wei Wang
- High
Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Liping Zhu
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshinori Hirano
- Laboratory
for Computational Molecular Design, Computational Biology Research
Core, RIKEN Quantitative Biology Center, 2F, QBiC Building B, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Marziyeh Kariminavargani
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate
School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Seiichi Tada
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Guanxin Zhang
- Key
Laboratory of Organic Solids, Beijing National Laboratory of Molecular
Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Takanori Uzawa
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Deqing Zhang
- Key
Laboratory of Organic Solids, Beijing National Laboratory of Molecular
Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Takuji Hirose
- Graduate
School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Makoto Taiji
- Laboratory
for Computational Molecular Design, Computational Biology Research
Core, RIKEN Quantitative Biology Center, 2F, QBiC Building B, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiro Ito
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Yang F, Wang X, Pan BB, Su XC. Single-armed phenylsulfonated pyridine derivative of DOTA is rigid and stable paramagnetic tag in protein analysis. Chem Commun (Camb) 2016; 52:11535-11538. [DOI: 10.1039/c6cc06114a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Single-armed DOTA-like phenylsulfonated pyridine derivatives are rigid and stable paramagnetic tags for site-specific labelling of proteins. The respective protein conjugates yield valuable long-range structural restraints for proteins.
Collapse
Affiliation(s)
- Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
9
|
Wang J, Yin T, Huang F, Song Y, An Y, Zhang Z, Shi L. Artificial chaperones based on mixed shell polymeric micelles: insight into the mechanism of the interaction of the chaperone with substrate proteins using Förster resonance energy transfer. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10238-10249. [PMID: 25939050 DOI: 10.1021/acsami.5b00684] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Controlled and reversible interactions between polymeric nanoparticles and proteins have gained more and more attention with the hope to address many biological issues such as prevention of protein denaturation, interference of the fibrillation of disease relative proteins, removing of toxic biomolecules as well as targeting delivery of proteins, etc. In such cases, proper analytic techniques are needed to reveal the underlying mechanism of the particle-protein interactions. In the current work, Förster Resonance Energy Transfer (FRET) was used to investigate the interaction of our tailor designed artificial chaperone based on mixed shell polymeric micelles (MSPMs) with their substrate proteins. We designed a new kind of MSPMs with fluorescent acceptors precisely placed at the desired locations as well as hydrophobic domains which can adsorb unfolded proteins with a propensity to aggregate. Interactions of such model micelles with a donor-labeled protein-FITC-lysozyme, was monitored by FRET. The fabrication strategy of MSPMs makes it possible to control the accurate location of the acceptor, which is critical to reveal some unexpected insights of the micelle-protein interactions upon heating and cooling. Preadsorption of native proteins onto the hydrophobic domains of the MSPMs is a key step to prevent thermo-denaturation by diminishing interprotein aggregations. Reversible protein adsorption during heating and releasing during cooling have been confirmed. Conclusions from the FRET effect are in line with the measurement of residual enzymatic activity.
Collapse
Affiliation(s)
- Jianzu Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Tao Yin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Fan Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Yiqing Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Zhenkun Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Atta D, Okasha A. Single molecule laser spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:1173-1179. [PMID: 25156641 DOI: 10.1016/j.saa.2014.07.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/10/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
In this article, we discussed some single molecule spectroscopy techniques and methods. We have chosen the simplicity in this survey based on our laboratory experience in this field. We concentrated on the imaging by both techniques the wide field and the scanning microscopes. Other imaging enhancements on the technique like extended resolution wide field, the total internal reflection imaging, and its derivatives are also reviewed. In addition to the imaging techniques, some diffusion techniques also are discussed like fluorescence correlation spectroscopy. The related methods like Forester resonance transfer, photo-induced electron transfer and anisotropy (steady state and time decay) are also discussed. In addition, we elucidated some simple details about the theory behind the FCS and its resulting curve fitting. This review is preceded by general introduction and ended with the conclusion.
Collapse
Affiliation(s)
- Diaa Atta
- Spectroscopy Department, Physics Division, National Research Center, 12311 Dokki, Cairo, Egypt.
| | - Ali Okasha
- Spectroscopy Department, Physics Division, National Research Center, 12311 Dokki, Cairo, Egypt
| |
Collapse
|
11
|
Nath JK, Baruah JB. Cyclic aromatic imides as a potential class of molecules for supramolecular interactions. CrystEngComm 2015. [DOI: 10.1039/c5ce01485a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prospects of stacking interactions of imides beneficial to generation of new soft materials are projected by analysing examples of primary building blocks that provide a basis for understanding at the molecular level.
Collapse
Affiliation(s)
- Jayanta K. Nath
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039, India
| | - Jubaraj B. Baruah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039, India
| |
Collapse
|
12
|
Nath JK, Baruah JB. Solvatoemissive dual fluorescence of N-(pyridylmethyl)-3-nitro-1,8-naphthalimides. J Fluoresc 2014; 24:649-55. [DOI: 10.1007/s10895-014-1353-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
|