1
|
Takita T, Wada M, Yamagata M, Kamata S, Mizutani K, Yogo Y, Hamada M, Yasuda K, Mikami B, Sakaki T, Yasukawa K. Structure-Function Analysis of Streptomyces griseolus CYP105A1 in the Metabolism of Nonsteroidal Anti-inflammatory Drugs. Biochemistry 2025. [PMID: 39752145 DOI: 10.1021/acs.biochem.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Streptomyces griseolus CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs. We successfully crystallized complexes of wild-type CYP105A1 (WT) and the R84A variant with diclofenac (DIF) or flufenamic acid (FLF). In the WT, the carboxyl group of DIF formed a charged hydrogen bond with Arg84. In contrast, in R84A, the carboxyl group formed two bidentate charged hydrogen bonds with Arg73. The C4' atom of the benzene ring of DIF, which undergoes hydroxylation by WT and R84A, was positioned approximately 4 Å from the heme iron. Binding of FLF was nearly the same in both WT and R84A. The carboxyl group of FLF formed charged hydrogen bonds with Arg73. In both WT and R84A, FLF appeared to be fixed by this charged hydrogen bonding with Arg73 during the reaction, and the C4' atom, which undergoes hydroxylation, must face the heme iron. Thus, the dihedral angles of the two N-C bonds connecting the two benzene rings of FLF needed to rotate by 78° and -71°, respectively. The temperature factors of the F-G loop, helix F, and helix G of R84A were remarkably higher than those of WT. This suggests that these regions in R84A are much more flexible compared to those of WT, which may consequently affect substrate binding and product release.
Collapse
Affiliation(s)
- Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Moeka Wada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaya Yamagata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Seiei Kamata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kimihiko Mizutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuya Yogo
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Michavila Puente-Villegas S, Apaza Ticona L, Rumbero Sánchez Á, Acebes JL. Diterpenes of Pinus pinaster aiton with anti-inflammatory, analgesic, and antibacterial activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117021. [PMID: 37567424 DOI: 10.1016/j.jep.2023.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE The P. pinaster species, known as 'Pino nigral or rodeno', is used in the treatment of colds, asthma, flu, and tuberculosis. AIM OF THE STUDY This study determined the anti-inflammatory, analgesic, and antibacterial activities of the P. pinaster resin, identifying the compounds with higher biological activity. MATERIALS AND METHODS A bio-guided isolation of the compounds of P. pinaster was carried out by selecting the most active extracts with anti-inflammatory and analgesic effects in the HBEC3-KT, MRC-5, and THP-1 cell lines. The antibacterial activity was determined against the S. aureus, S. pneumoniae, K. pneumoniae and P. aeruginosa strains. RESULTS The following compounds were identified by NMR: dehydroabietic acid (1), ( + )-cis-abienol (2), pimaric acid (3), isopimaric acid (4), 7α-hydroxy-dehydroabietic acid (5), 7-oxo-dehydroabietic acid (6), 15-hydroxy-abietic acid (7), 7-oxo-15-hydroxy-dehydroabietic acid (8), 13-oxo-8 (14)-podocarpen-18-oic acid (9), and pinyunin A (10). Regarding their anti-inflammatory activity, all compounds inhibited NF-κB. Compound 9 was the most active (IC50 = 3.90-12.06 μM). Concerning the analgesic activity, all the compounds inhibited NK-1, yet compound 9 was the most active (IC50 = 0.28-0.33 μM). Finally, compounds 6 (MIC = 12.80-25.55 μM) and 9 (MIC = 9.80-24.31 μM) were the most promising antibacterial compounds in all strains. CONCLUSION This study managed to identify, for the first time, six diterpenes from the resin of P. pinaster, with anti-inflammatory, analgesic, and antibacterial activity. Among the identified compounds, compound 9 was the most active, being considered a promising candidate as an antagonist of the tachykinin NK-1 receptor and as an analgesic agent against inflammation and neuropathic pain. It also had an antibacterial effect against Gram negative bacteria.
Collapse
Affiliation(s)
- Santiago Michavila Puente-Villegas
- Plant Physiology Area, Department of Engineering and Agricultural Sciences, Faculty of Biological and Environmental Sciences, Universidad de León, Campus Vegazana, 24007, León, Spain
| | - Luis Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain; Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid. Plza, Ramón y Cajal S/n, 28040, Madrid, Spain.
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain
| | - José-Luis Acebes
- Plant Physiology Area, Department of Engineering and Agricultural Sciences, Faculty of Biological and Environmental Sciences, Universidad de León, Campus Vegazana, 24007, León, Spain
| |
Collapse
|
3
|
Ristinmaa AS, Tafur Rangel A, Idström A, Valenzuela S, Kerkhoven EJ, Pope PB, Hasani M, Larsbrink J. Resin acids play key roles in shaping microbial communities during degradation of spruce bark. Nat Commun 2023; 14:8171. [PMID: 38071207 PMCID: PMC10710418 DOI: 10.1038/s41467-023-43867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The bark is the outermost defense of trees against microbial attack, largely thanks to toxicity and prevalence of extractive compounds. Nevertheless, bark decomposes in nature, though by which species and mechanisms remains unknown. Here, we have followed the development of microbial enrichments growing on spruce bark over six months, by monitoring both chemical changes in the material and performing community and metagenomic analyses. Carbohydrate metabolism was unexpectedly limited, and instead a key activity was metabolism of extractives. Resin acid degradation was principally linked to community diversification with specific bacteria revealed to dominate the process. Metagenome-guided isolation facilitated the recovery of the dominant enrichment strain in pure culture, which represents a new species (Pseudomonas abieticivorans sp. nov.), that can grow on resin acids as a sole carbon source. Our results illuminate key stages in degradation of an abundant renewable resource, and how defensive extractive compounds have major roles in shaping microbiomes.
Collapse
Affiliation(s)
| | - Albert Tafur Rangel
- Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Alexander Idström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Sebastian Valenzuela
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, NO-1433, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1433, Ås, Norway
| | - Merima Hasani
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Johan Larsbrink
- Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
4
|
Ivanova KM, Grishko VV, Ivshina IB. Highly Efficient Biodegradation of Ecotoxic Dehydroabietic Acid by Resting Cells of Rhodococcus rhodochrous IEGM 107. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Finnigan JD, Young C, Cook DJ, Charnock SJ, Black GW. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:289-320. [PMID: 32951814 DOI: 10.1016/bs.apcsb.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization. Prokaryotic P450s now represent a large diverse collection of annotated/known enzymes, of which many have great potential biocatalytic potential. The self-sufficient P450 classes (Class VII/VIII) have been explored significantly over the past decade, with many annotated and biochemically characterized members. It is clear that the prokaryotic P450 world is expanding rapidly, as the number of published genomes and metagenome studies increases, and more P450 families are identified and annotated (CYP families).
Collapse
Affiliation(s)
| | - Carl Young
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | - Darren J Cook
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | | | - Gary W Black
- Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Mnguni FC, Padayachee T, Chen W, Gront D, Yu JH, Nelson DR, Syed K. More P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus, Cyanobacteria, and Mycobacterium. Int J Mol Sci 2020; 21:ijms21134814. [PMID: 32646068 PMCID: PMC7369989 DOI: 10.3390/ijms21134814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Unraveling the role of cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins present in living and non-living entities, in secondary metabolite synthesis is gaining momentum. In this direction, in this study, we analyzed the genomes of 203 Streptomyces species for P450s and unraveled their association with secondary metabolism. Our analyses revealed the presence of 5460 P450s, grouped into 253 families and 698 subfamilies. The CYP107 family was found to be conserved and highly populated in Streptomyces and Bacillus species, indicating its key role in the synthesis of secondary metabolites. Streptomyces species had a higher number of P450s than Bacillus and cyanobacterial species. The average number of secondary metabolite biosynthetic gene clusters (BGCs) and the number of P450s located in BGCs were higher in Streptomyces species than in Bacillus, mycobacterial, and cyanobacterial species, corroborating the superior capacity of Streptomyces species for generating diverse secondary metabolites. Functional analysis via data mining confirmed that many Streptomyces P450s are involved in the biosynthesis of secondary metabolites. This study was the first of its kind to conduct a comparative analysis of P450s in such a large number (203) of Streptomyces species, revealing the P450s’ association with secondary metabolite synthesis in Streptomyces species. Future studies should include the selection of Streptomyces species with a higher number of P450s and BGCs and explore the biotechnological value of secondary metabolites they produce.
Collapse
Affiliation(s)
- Fanele Cabangile Mnguni
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
- Correspondence: (D.R.N.); (K.S.)
| |
Collapse
|
7
|
Luchnikova NA, Ivanova KM, Tarasova EV, Grishko VV, Ivshina IB. Microbial Conversion of Toxic Resin Acids. Molecules 2019; 24:molecules24224121. [PMID: 31739575 PMCID: PMC6891630 DOI: 10.3390/molecules24224121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022] Open
Abstract
Organic wood extractives—resin acids—significantly contribute to an increase in the toxicity level of pulp and paper industry effluents. Entering open ecosystems, resin acids accumulate and have toxic effects on living organisms, which can lead to the ecological imbalance. Among the most effective methods applied to neutralize these ecotoxicants is enzymatic detoxification using microorganisms. A fundamental interest in the in-depth study of the oxidation mechanisms of resin acids and the search for their key biodegraders is increasing every year. Compounds from this group receive attention because of the need to develop highly effective procedures of resin acid removal from pulp and paper effluents and also the possibility to obtain their derivatives with pronounced pharmacological effects. Over the past fifteen years, this is the first report analyzing the data on distribution, the impacts on living organisms, and the microbial transformation of resin acids. Using the example of dehydroabietic acid—the dominant compound of resin acids in effluents—the review discusses the features of interactions between microorganisms and this pollutant and also highlights the pathways and main products of resin acid bioconversion.
Collapse
Affiliation(s)
- Natalia A. Luchnikova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Kseniya M. Ivanova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Ekaterina V. Tarasova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Victoria V. Grishko
- Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences, 614013 Perm, Russia;
| | - Irina B. Ivshina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
- Correspondence: ; Tel.: +7-342-2808114
| |
Collapse
|
8
|
Functions of mountain pine beetle cytochromes P450 CYP6DJ1, CYP6BW1 and CYP6BW3 in the oxidation of pine monoterpenes and diterpene resin acids. PLoS One 2019; 14:e0216753. [PMID: 31071168 PMCID: PMC6508646 DOI: 10.1371/journal.pone.0216753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/26/2019] [Indexed: 01/17/2023] Open
Abstract
The mountain pine beetle (MPB; Dendroctonus ponderosae) is a forest insect pest that attacks several different pine (Pinus) species in its native range of distribution in western North America. MPB are exposed for most of their life cycle to the chemical defenses of their hosts. These defenses are dominated by oleoresin secretions containing mostly various monoterpenes and diterpene resin acids (DRAs). Cytochrome P450 enzymes (P450s) of the MPB are thought to be involved in the metabolism of at least some of these defense compounds. Here we describe the cloning and characterization of three MPB P450s, CYP6DJ1, CYP6BW1 and CYP6BW3, and their functions in the oxidation of various monoterpenes and diterpene resin acids. CYP6DJ1 oxidizes the monoterpenes (+)-(4R)-limonene, (-)-(4S)-limonene and terpinolene and produces (4R,8R)-limonene-8,9-epoxide, (4R,8S)-limonene-8,9-epoxide, (4S,8S)-limonene-8,9-epoxide, (4S,8R)-limonene-8,9-epoxide, perilla alcohol and several unidentified oxidized compounds. These products of CYP6DJ1 were also identified in extracts of MPB treated with the same monoterpenes. CYP6BW1 and CYP6BW3 both oxidize the DRAs abietic acid, dehydroabietic acid, neoabietic acid, levopimaric acid, palustric acid, and isopimaric acid, producing hydroxylated and epoxidized DRAs. CYP6DJ1, CYP6BW1 and CYP6BW3 appear to contribute to the metabolism of oleoresin terpenes as part of the MPB's ability to cope with host defenses.
Collapse
|
9
|
Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol 2018; 102:3513-3536. [PMID: 29502181 DOI: 10.1007/s00253-018-8884-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Collapse
|
10
|
Gromova MA, Kharitonov YV, Rybalova TV, Shul’ts EE. Synthetic Transformations of Higher Terpenoids. 36.* Synthesis of 13-(Oxazol-5-Yl)-15,16-Bisnorisopimaranes. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2327-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Cheremnykh KM, Grishko VV, Ivshin IB. Bacterial degradation of ecotoxic dehydroabietic acid. CATALYSIS IN INDUSTRY 2017. [DOI: 10.1134/s207005041704002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 2017; 34:1141-1172. [PMID: 28758170 PMCID: PMC5585785 DOI: 10.1039/c7np00034k] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and <0.4% of streptomycete P450s have been functionally and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
13
|
Schmitz D, Janocha S, Kiss FM, Bernhardt R. CYP106A2-A versatile biocatalyst with high potential for biotechnological production of selectively hydroxylated steroid and terpenoid compounds. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:11-22. [PMID: 28780179 DOI: 10.1016/j.bbapap.2017.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
CYP106A2 from Bacillus megaterium ATCC13368, was identified in the 1970s as one of the first bacterial steroid hydroxylases responsible for the conversion of progesterone to 15β-hydroxyprogesterone. Later on it has been proven to be a potent hydroxylase of numerous 3-oxo-Δ4 as well as 3-hydroxy-Δ5-steroids and has recently also been characterized as a regioselective allylic bacterial diterpene hydroxylase. The main hydroxylation position of CYP106A2 is thought to be influenced by the functional groups at C3 position in the steroid core leading to a favored 15β-hydroxylation of 3-oxo-Δ4-steroids and 7β-hydroxylation of 3-hydroxy-Δ5-steroids. However, in some cases the hydroxylation is not strictly selective, resulting in the formation of undesired side-products. To overcome the unspecific hydroxylations or, on the contrary, to gain more of these products in case they are of industrial interest, rational protein design and directed evolution have been successfully performed to shift the stereoselectivity of hydroxylation by CYP106A2. The subsequently obtained hydroxylated steroid and terpene derivatives are especially useful as drug metabolites and drug precursors for the pharmaceutical industry, due to their diverse biological properties and hardship of their chemical synthesis. As a soluble prokaryotic P450 with broad substrate spectrum and hydroxylating capacity, CYP106A2 is an outstanding candidate to establish bioconversion processes. It has been expressed with respectable yields in Escherichia coli and Bacillus megaterium and was applied for the preparative hydroxylation of several steroids and terpenes. Recently, the application of the enzyme was assessed under process conditions as well, depicting a successfully optimized process development and getting us closer to industrial scale process requirements and a future large scale application. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Daniela Schmitz
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Simon Janocha
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Flora Marta Kiss
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany.
| |
Collapse
|
14
|
Yasuda K, Sugimoto H, Hayashi K, Takita T, Yasukawa K, Ohta M, Kamakura M, Ikushiro S, Shiro Y, Sakaki T. Protein engineering of CYP105s for their industrial uses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:23-31. [PMID: 28583351 DOI: 10.1016/j.bbapap.2017.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/20/2017] [Accepted: 05/27/2017] [Indexed: 12/26/2022]
Abstract
Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hiroshi Sugimoto
- RIKEN Spring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan
| | - Keiko Hayashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Teisuke Takita
- Division of Food Science and Technology, Graduate School of Agriculture, Kyoto University, KitashirakawaOiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Technology, Graduate School of Agriculture, Kyoto University, KitashirakawaOiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Miho Ohta
- Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nanko-naka, Suminoe-ku, Osaka 559-0033, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yoshitsugu Shiro
- RIKEN Spring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
15
|
Janocha S, Carius Y, Hutter M, Lancaster CRD, Bernhardt R. Crystal Structure of CYP106A2 in Substrate-Free and Substrate-Bound Form. Chembiochem 2016; 17:852-60. [DOI: 10.1002/cbic.201500524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Simon Janocha
- Department of Biochemistry; Saarland University; Campus B2.2 66123 Saarbrücken Germany
| | - Yvonne Carius
- Department of Structural Biology, ZHMB; Saarland University; Building 60 66421 Homburg Germany
| | - Michael Hutter
- Center for Bioinformatics; Saarland University; Campus E2.1 66123 Saarbrücken Germany
| | - C. Roy D. Lancaster
- Department of Structural Biology, ZHMB; Saarland University; Building 60 66421 Homburg Germany
| | - Rita Bernhardt
- Department of Biochemistry; Saarland University; Campus B2.2 66123 Saarbrücken Germany
| |
Collapse
|
16
|
Hu CL, Xiong J, Gao LX, Li J, Zeng H, Zou Y, Hu JF. Diterpenoids from the shed trunk barks of the endangered plant Pinus dabeshanensis and their PTP1B inhibitory effects. RSC Adv 2016. [DOI: 10.1039/c6ra08986k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
11 new (including an unprecedented skeleton, 3) and 28 related known diterpenoids with interesting PTP1B inhibitory effects were identified.
Collapse
Affiliation(s)
- Chang-Ling Hu
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai 201203
- PR China
| | - Juan Xiong
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai 201203
- PR China
| | - Li-Xin Gao
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- PR China
| | - Jia Li
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- PR China
| | - Huaqiang Zeng
- Institute of Bioengineering and Nanotechnology
- Singapore
| | - Yike Zou
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jin-Feng Hu
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai 201203
- PR China
| |
Collapse
|
17
|
Schifrin A, Litzenburger M, Ringle M, Ly TTB, Bernhardt R. New Sesquiterpene Oxidations with CYP260A1 and CYP264B1 fromSorangium cellulosumSo ce56. Chembiochem 2015; 16:2624-32. [DOI: 10.1002/cbic.201500417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Alexander Schifrin
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| | - Martin Litzenburger
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| | - Michael Ringle
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| | - Thuy T. B. Ly
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
- Institute of Biotechnology; Vietnam Academy of Science and Technology (VAST); 18-Hoang Quoc Viet Hanoi Vietnam
| | - Rita Bernhardt
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| |
Collapse
|
18
|
Mosa A, Neunzig J, Gerber A, Zapp J, Hannemann F, Pilak P, Bernhardt R. 2β- and 16β-hydroxylase activity of CYP11A1 and direct stimulatory effect of estrogens on pregnenolone formation. J Steroid Biochem Mol Biol 2015; 150:1-10. [PMID: 25746800 DOI: 10.1016/j.jsbmb.2015.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 12/27/2022]
Abstract
The biosynthesis of steroid hormones in vertebrates is initiated by the cytochrome P450 CYP11A1, which performs the side-chain cleavage of cholesterol thereby producing pregnenolone. In this study, we report a direct stimulatory effect of the estrogens estradiol and estrone onto the pregnenolone formation in a reconstituted in vitro system consisting of purified CYP11A1 and its natural redox partners. We demonstrated the formation of new products from 11-deoxycorticosterone (DOC), androstenedione, testosterone and dehydroepiandrosterone (DHEA) during the in vitro reaction catalyzed by CYP11A1. In addition, we also established an Escherichia coli-based whole-cell biocatalytic system consisting of CYP11A1 and its redox partners to obtain sufficient yields of products for NMR-characterization. Our results indicate that CYP11A1, in addition to the previously described 6β-hydroxylase activity, possesses a 2β-hydroxylase activity towards DOC and androstenedione as well as a 16β-hydroxylase activity towards DHEA. We also showed that CYP11A1 is able to perform the 6β-hydroxylation of testosterone, a reaction that has been predominantly attributed to CYP3A4. Our results are the first evidence that sex hormones positively regulate the overall production of steroid hormones suggesting the need to reassess the role of CYP11A1 in steroid hormone biosynthesis and its substrate-dependent mechanistic properties.
Collapse
Affiliation(s)
- A Mosa
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - J Neunzig
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - A Gerber
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - J Zapp
- Institute of Pharmaceutical Biology, Saarland University, 66123 Saarbrücken, Germany
| | - F Hannemann
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - P Pilak
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - R Bernhardt
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
19
|
Janocha S, Schmitz D, Bernhardt R. Terpene hydroxylation with microbial cytochrome P450 monooxygenases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:215-50. [PMID: 25682070 DOI: 10.1007/10_2014_296] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terpenoids comprise a highly diverse group of natural products. In addition to their basic carbon skeleton, they differ from one another in their functional groups. Functional groups attached to the carbon skeleton are the basis of the terpenoids' diverse properties. Further modifications of terpene olefins include the introduction of acyl-, aryl-, or sugar moieties and usually start with oxidations catalyzed by cytochrome P450 monooxygenases (P450s, CYPs). P450s are ubiquitously distributed throughout nature, involved in essential biological pathways such as terpenoid biosynthesis as well as the tailoring of terpenoids and other natural products. Their ability to introduce oxygen into nonactivated C-H bonds is unique and makes P450s very attractive for applications in biotechnology. Especially in the field of terpene oxidation, biotransformation methods emerge as an attractive alternative to classical chemical synthesis. For this reason, microbial P450s depict a highly interesting target for protein engineering approaches in order to increase selectivity and activity, respectively. Microbial P450s have been described to convert industrial and pharmaceutically interesting terpenoids such as ionones, limone, valencene, resin acids, and triterpenes (including steroids) as well as vitamin D3. Highly selective and active mutants have been evolved by applying classical site-directed mutagenesis as well as directed evolution of proteins. As P450s usually depend on electron transfer proteins, mutagenesis has also been applied to improve the interactions between P450s and their respective redox partners. This chapter provides an overview of terpenoid hydroxylation reactions catalyzed by bacterial P450s and highlights the achievements made by protein engineering to establish productive hydroxylation processes.
Collapse
Affiliation(s)
- Simon Janocha
- Department of Biochemistry, Saarland University, Campus B2 2, 66123, Saarbruecken, Germany
| | | | | |
Collapse
|
20
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes labdanes, clerodanes, pimaranes, abietanes, kauranes, gibberellins, cembranes and their cyclization products. The literature from January to December 2013 is reviewed.
Collapse
|
21
|
Schifrin A, Ly TTB, Günnewich N, Zapp J, Thiel V, Schulz S, Hannemann F, Khatri Y, Bernhardt R. Characterization of the Gene Cluster CYP264B1-geoA fromSorangium cellulosumSo ce56: Biosynthesis of (+)-Eremophilene and Its Hydroxylation. Chembiochem 2014; 16:337-44. [DOI: 10.1002/cbic.201402443] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Indexed: 11/06/2022]
|
22
|
Moody SC, Loveridge EJ. CYP105-diverse structures, functions and roles in an intriguing family of enzymes in Streptomyces. J Appl Microbiol 2014; 117:1549-63. [PMID: 25294646 PMCID: PMC4265290 DOI: 10.1111/jam.12662] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/24/2014] [Accepted: 10/03/2014] [Indexed: 11/29/2022]
Abstract
The cytochromes P450 (CYP or P450) are a large superfamily of haem-containing enzymes found in all domains of life. They catalyse a variety of complex reactions, predominantly mixed-function oxidations, often displaying highly regio- and/or stereospecific chemistry. In streptomycetes, they are predominantly associated with secondary metabolite biosynthetic pathways or with xenobiotic catabolism. Homologues of one family, CYP105, have been found in all Streptomyces species thus far sequenced. This review looks at the diverse biological functions of CYP105s and the biosynthetic/catabolic pathways they are associated with. Examples are presented showing a range of biotransformative abilities and different contexts. As biocatalysts capable of some remarkable chemistry, CYP105s have great biotechnological potential and merit detailed study. Recent developments in biotechnological applications which utilize CYP105s are described, alongside a brief overview of the benefits and drawbacks of using P450s in commercial applications. The role of CYP105s in vivo is in many cases undefined and provides a rich source for further investigation into the functions these enzymes fulfil and the metabolic pathways they participate in, in the natural environment.
Collapse
Affiliation(s)
- Suzy C Moody
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | | |
Collapse
|
23
|
Synthetic Transformations of Higher Terpenoids. XXXIV.* Preparation of Carboxyl Derivatives of Isopimaric Acid. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-1050-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Design and characterization of an efficient CYP105A1-based whole-cell biocatalyst for the conversion of resin acid diterpenoids in permeabilized Escherichia coli. Appl Microbiol Biotechnol 2013; 97:7639-49. [PMID: 23793341 DOI: 10.1007/s00253-013-5008-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/02/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
Abstract
Cytochrome P450 enzymes exhibit a tremendous potential for biotechnological applications due to their ability to introduce oxygen into non-activated carbon atoms. Their catalytic diversity is complemented by a broad substrate range covering many natural compounds. Especially the functionalization of terpenoids by P450s becomes increasingly interesting due to the diverse biological effects of these compounds. The bacterial CYP105A1 from Streptomyces griseolus was recently identified to carry out a one-step hydroxylation of several abietane-type resin acids. In this work, a whole-cell system for CYP105A1 with its heterologous electron transfer proteins Arh1 and Etp1(fd) from Schizosaccharomyces pombe was designed in Escherichia coli JM109 cells. Additionally, an enzyme-coupled cofactor regeneration system was integrated by co-expression of alcohol dehydrogenase from Lactobacillus brevis. In order to overcome mass transfer limitations of substrate into the cell, different agents were tested towards their permeabilizing activity on the E. coli membrane. The peptide antibiotic polymyxin B proved to be the most effective permeabilizer. After optimising the expression and conversion conditions, the cells were able to completely convert 200 μM of abietic acid into 15-hydroxyabietic acid within 2 h, exhibiting an initial conversion rate of 125 μM/h. These results demonstrate the high potential of this whole-cell system for the synthesis of functionalized resin acid diterpenoids.
Collapse
|