1
|
Ramírez-Trinidad Á, Martínez-Solano E, Tovar-Roman CE, García-Guerrero M, Rivera-Chávez JA, Hernández-Vázquez E. Synthesis, antibiofilm activity and molecular docking of N-acylhomoserine lactones containing cinammic moieties. Bioorg Med Chem Lett 2024; 98:129592. [PMID: 38101651 DOI: 10.1016/j.bmcl.2023.129592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
We prepared a series of cinnamoyl-containing furanones by an affordable and short synthesis. The nineteen compounds hold a variety of substituents including electron-donating, electron-withdrawing, bulky and meta-substituted phenyls, as well as heterocyclic rings. Compounds showed antibiofilm activity in S. aureus, K. pneumoniae and, more pronounced, against P. aeruginosa. The disruption of quorum sensing (QS) was tested using the violacein test and molecular docking predicted the antagonism of LasR as a plausible mechanism of action. The trimethoxylated and diene derivatives showed the best antibiofilm and anti-QS properties, thus becoming candidates for further modifications.
Collapse
Affiliation(s)
- Ángel Ramírez-Trinidad
- Department of Organic Chemistry, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
| | - Ernesto Martínez-Solano
- Department of Organic Chemistry, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
| | - César E Tovar-Roman
- Department of Organic Chemistry, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
| | - Mariana García-Guerrero
- Department of Natural Products, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
| | - José A Rivera-Chávez
- Department of Natural Products, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
| | - Eduardo Hernández-Vázquez
- Department of Organic Chemistry, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico.
| |
Collapse
|
2
|
Serrano-Aguirre L, Velasco-Bucheli R, García-Álvarez B, Saborido A, Arroyo M, de la Mata I. Novel Bifunctional Acylase from Actinoplanes utahensis: A Versatile Enzyme to Synthesize Antimicrobial Compounds and Use in Quorum Quenching Processes. Antibiotics (Basel) 2021; 10:antibiotics10080922. [PMID: 34438972 PMCID: PMC8388760 DOI: 10.3390/antibiotics10080922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Many intercellular communication processes, known as quorum sensing (QS), are regulated by the autoinducers N-acyl-l-homoserine lactones (AHLs) in Gram-negative bacteria. The inactivation of these QS processes using different quorum quenching (QQ) strategies, such as enzymatic degradation of the autoinducers or the receptor blocking with non-active analogs, could be the basis for the development of new antimicrobials. This study details the heterologous expression, purification, and characterization of a novel N-acylhomoserine lactone acylase from Actinoplanes utahensis NRRL 12052 (AuAHLA), which can hydrolyze different natural penicillins and N-acyl-homoserine lactones (with or without 3-oxo substitution), as well as synthesize them. Kinetic parameters for the hydrolysis of a broad range of substrates have shown that AuAHLA prefers penicillin V, followed by C12-HSL. In addition, AuAHLA inhibits the production of violacein by Chromobacterium violaceum CV026, confirming its potential use as a QQ agent. Noteworthy, AuAHLA is also able to efficiently synthesize penicillin V, besides natural AHLs and phenoxyacetyl-homoserine lactone (POHL), a non-natural analog of AHLs that could be used to block QS receptors and inhibit signal of autoinducers, being the first reported AHL acylase capable of synthesizing AHLs.
Collapse
|
3
|
Potent modulation of the CepR quorum sensing receptor and virulence in a Burkholderia cepacia complex member using non-native lactone ligands. Sci Rep 2019; 9:13449. [PMID: 31530834 PMCID: PMC6748986 DOI: 10.1038/s41598-019-49693-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a family of closely related bacterial pathogens that are the causative agent of deadly human infections. Virulence in Bcc species has been shown to be controlled by the CepI/CepR quorum sensing (QS) system, which is mediated by an N-acyl L-homoserine lactone (AHL) signal (C8-AHL) and its cognate LuxR-type receptor (CepR). Chemical strategies to block QS in Bcc members would represent an approach to intercept this bacterial communication process and further delineate its role in infection. In the current study, we sought to identify non-native AHLs capable of agonizing or antagonizing CepR, and thereby QS, in a Bcc member. We screened a library of AHL analogs in cell-based reporters for CepR, and identified numerous highly potent CepR agonists and antagonists. These compounds remain active in a Bcc member, B. multivorans, with one agonist 250-fold more potent than the native ligand C8-AHL, and can affect QS-controlled motility. Further, the CepR antagonists prolong C. elegans survival in an infection model. These AHL analogs are the first reported non-native molecules that both directly modulate CepR and impact QS-controlled phenotypes in a Bcc member, and represent valuable chemical tools to assess the role of QS in Bcc infections.
Collapse
|
4
|
Rhoads MK, Hauk P, Terrell J, Tsao CY, Oh H, Raghavan SR, Mansy SS, Payne GF, Bentley WE. Incorporating LsrK AI-2 quorum quenching capability in a functionalized biopolymer capsule. Biotechnol Bioeng 2017; 115:278-289. [PMID: 28782813 DOI: 10.1002/bit.26397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/07/2023]
Abstract
Antibacterial resistance is an issue of increasing severity as current antibiotics are losing their effectiveness and fewer antibiotics are being developed. New methods for combating bacterial virulence are required. Modulating molecular communication among bacteria can alter phenotype, including attachment to epithelia, biofilm formation, and even toxin production. Intercepting and modulating communication networks provide a means to attenuate virulence without directly interacting with the bacteria of interest. In this work, we target communication mediated by the quorum sensing (QS) bacterial autoinducer-2, AI-2. We have assembled a capsule of biological polymers alginate and chitosan, attached an AI-2 processing kinase, LsrK, and provided substrate, ATP, for enzymatic alteration of AI-2 in culture fluids. Correspondingly, AI-2 mediated QS activity is diminished. All components of this system are "biofabricated"-they are biologically derived and their assembly is accomplished using biological means. Initially, component quantities and kinetics were tested as assembled in microtiter plates. Subsequently, the identical components and assembly means were used to create the "artificial cell" capsules. The functionalized capsules, when introduced into populations of bacteria, alter the dynamics of the AI-2 bacterial communication, attenuating QS activated phenotypes. We envision the assembly of these and other capsules or similar materials, as means to alter QS activity in a biologically compatible manner and in many environments, including in humans.
Collapse
Affiliation(s)
- Melissa K Rhoads
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Pricila Hauk
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jessica Terrell
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Chen-Yu Tsao
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Hyuntaek Oh
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland
| | - Sheref S Mansy
- CIBIO-Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
5
|
Crowe D, Nicholson A, Fleming A, Carey E, Sánchez-Sanz G, Kelleher F. Conformational studies of Gram-negative bacterial quorum sensing 3-oxo N -acyl homoserine lactone molecules. Bioorg Med Chem 2017; 25:4285-4296. [DOI: 10.1016/j.bmc.2017.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 11/24/2022]
|
6
|
Plakunov VK, Mart’yanov SV, Teteneva NA, Zhurina MV. Controlling of microbial biofilms formation: Anti- and probiofilm agents. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Eibergen NR, Moore JD, Mattmann ME, Blackwell HE. Potent and Selective Modulation of the RhlR Quorum Sensing Receptor by Using Non-native Ligands: An Emerging Target for Virulence Control in Pseudomonas aeruginosa. Chembiochem 2015; 16:2348-56. [PMID: 26460240 DOI: 10.1002/cbic.201500357] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/10/2022]
Abstract
Pseudomonas aeruginosa uses N-acylated L-homoserine lactone signals and a triumvirate of LuxR-type receptor proteins--LasR, RhlR, and QscR--for quorum sensing (QS). Each of these receptors can contribute to QS activation or repression and, thereby, the control of myriad virulence phenotypes in this pathogen. LasR has traditionally been considered to be at the top of the QS receptor hierarchy in P. aeruginosa; however, recent reports suggest that RhlR plays a more prominent role in infection than originally predicted, in some circumstances superseding that of LasR. Herein, we report the characterization of a set of synthetic, small-molecule agonists and antagonists of RhlR. Using E. coli reporter strains, we demonstrated that many of these compounds can selectively activate or inhibit RhlR instead of LasR and QscR. Moreover, several molecules maintain their activities in P. aeruginosa at concentrations analogous to native RhlR signal levels. These compounds represent useful chemical probes to study the role of RhlR in the complex QS circuitry of P. aeruginosa, its direct (and indirect) effects on virulence, and its overall merit as a target for anti-infective therapy.
Collapse
Affiliation(s)
- Nora R Eibergen
- Dow Microbial Control, The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | - Joseph D Moore
- Dow Microbial Control, The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | | | - Helen E Blackwell
- Department of Chemistry, The University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Gerdt JP, McInnis CE, Schell TL, Blackwell HE. Unraveling the contributions of hydrogen-bonding interactions to the activity of native and non-native ligands in the quorum-sensing receptor LasR. Org Biomol Chem 2015; 13:1453-62. [PMID: 25474181 DOI: 10.1039/c4ob02252a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quorum sensing (QS) via the synthesis and detection of N-acyl L-homoserine lactone (AHL) signals regulates important pathogenic and mutualistic phenotypes in many bacteria. Over the past two decades, the development of non-native molecules that modulate this cell-cell signaling process has become an active area of research. The majority of these compounds were designed to block binding of the native AHL signal to its cognate LuxR-type receptor, and much effort has focused on LasR in the opportunistic pathogen Pseudomonas aeruginosa. Despite a small set of reported LasR structural data, it remains unclear which polar interactions are most important for either (i) activation of the LasR receptor by its native AHL signal, N-(3-oxo)-dodecanoyl L-homoserine lactone (OdDHL), or (ii) activation or inhibition of LasR by related AHL analogs. Herein, we report our investigations into the activity of OdDHL and five synthetic analogs in wild-type LasR and in nine LasR mutants with modifications to key polar residues in their ligand binding sites. Our results allowed us to rank, for the first time, the relative importance of each LasR:OdDHL hydrogen bond for LasR activation and provide strong evidence for the five synthetic ligands binding LasR in a very similar orientation as OdDHL. By delineating the specific molecular interactions that are important for LasR modulation by AHLs, these findings should aid in the design of new synthetic modulators of LasR (and homologous LuxR-type receptors) with improved potencies and selectivities.
Collapse
Affiliation(s)
- Joseph P Gerdt
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA.
| | | | | | | |
Collapse
|
9
|
Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms. Chem Biol Drug Des 2015; 86:379-99. [DOI: 10.1111/cbdd.12517] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ségolène Ruer
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - David Steadman
- Wolfson Institute for Biomedical Research (WIBR); UCL; London WC1E 6BT UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| |
Collapse
|