1
|
de Souza RA, Díaz N, G. Fuentes L, Pimenta A, Nagem RAP, Chávez-Olórtegui C, Schneider FS, Molina F, Sanchez EF, Suárez D, Ferreira RS. Assessing the Interactions between Snake Venom Metalloproteinases and Hydroxamate Inhibitors Using Kinetic and ITC Assays, Molecular Dynamics Simulations and MM/PBSA-Based Scoring Functions. ACS OMEGA 2024; 9:50599-50621. [PMID: 39741831 PMCID: PMC11684173 DOI: 10.1021/acsomega.4c08439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025]
Abstract
Bothrops species are the main cause of snake bites in rural communities of tropical developing countries of Central and South America. Envenomation by Bothrops snakes is characterized by prominent local inflammation, hemorrhage and necrosis as well as systemic hemostatic disturbances. These pathological effects are mainly caused by the major toxins of the viperidae venoms, the snake venom metalloproteinases (SVMPs). Despite the antivenom therapy efficiency to block the main toxic effects on bite victims, this treatment shows limited efficacy to prevent tissue necrosis. Thus, drug-like inhibitors of these toxins have the potential to aid serum therapy of accidents inflicted by viper snakes. Broad-spectrum metalloprotease inhibitors bearing a hydroxamate zinc-binding group are potential candidates to improve snake bites therapy and could also be used to study toxin-ligand interactions. Therefore, in this work, we used both docking calculations and molecular dynamics simulations to assess the interactions between six hydroxamate inhibitors and two P-I SVMPs selected as models: Atroxlysin-I (hemorrhagic) from Bothrops atrox, and Leucurolysin-a (nonhemorrhagic) from Bothrops leucurus. We also employed a large variety of end-point free energy methods in combination with entropic terms to produce scoring functions of the relative affinities of the inhibitors for the toxins. Then we identified the scoring functions that best correlated with experimental data obtained from kinetic activity assays. In addition, to the characterization of these six molecules as inhibitors of the toxins, this study sheds light on the main enzyme-inhibitor interactions, explaining the broad-spectrum behavior of the inhibitors, and identifies the energetic and entropic terms that improve the performance of the scoring functions.
Collapse
Affiliation(s)
- Raoni A. de Souza
- Rua Conde Pereira Carneiro 80, Dept. de Pesquisa e
Desenvolvimento, Fundação Ezequiel Dias, Belo
Horizonte 30510-010, Minas Gerais, Brazil
| | - Natalia Díaz
- Avda Julián Clavería 8, Dept. de
Química Física y Analítica, Universidad de
Oviedo, Oviedo 33006, Asturias, Spain
| | - Luis G. Fuentes
- Carretera Sacramento s/n, Dept. de Química y
Física, Universidad de Almería, Almería
04120, Andalucía, Spain
| | - Adriano Pimenta
- Avenida Antônio Carlos 6627, Dept. De
Bioquímica e Imunologia, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Minas Gerais,
Brazil
| | - Ronaldo A. P. Nagem
- Avenida Antônio Carlos 6627, Dept. De
Bioquímica e Imunologia, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Minas Gerais,
Brazil
| | - Carlos Chávez-Olórtegui
- Avenida Antônio Carlos 6627, Dept. De
Bioquímica e Imunologia, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Minas Gerais,
Brazil
| | - Francisco S. Schneider
- 1682, Rue de la Valsière, Sys2Diag
(UMR9005 CNRS − ALCEN), Cap Delta, Montpellier 34184, Occitanie,
France
| | - Franck Molina
- 1682, Rue de la Valsière, Sys2Diag
(UMR9005 CNRS − ALCEN), Cap Delta, Montpellier 34184, Occitanie,
France
| | - Eladio F. Sanchez
- Rua Conde Pereira Carneiro 80, Dept. de Pesquisa e
Desenvolvimento, Fundação Ezequiel Dias, Belo
Horizonte 30510-010, Minas Gerais, Brazil
| | - Dimas Suárez
- Avda Julián Clavería 8, Dept. de
Química Física y Analítica, Universidad de
Oviedo, Oviedo 33006, Asturias, Spain
| | - Rafaela S. Ferreira
- Avenida Antônio Carlos 6627, Dept. De
Bioquímica e Imunologia, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Minas Gerais,
Brazil
| |
Collapse
|
2
|
Paul Konken C, Beutel B, Schinor B, Song J, Gerwien H, Korpos E, Burmeister M, Riemann B, Schäfers M, Sorokin L, Haufe G. Influence of N-arylsulfonamido d-valine N-substituents on the selectivity and potency of matrix metalloproteinase inhibitors. Bioorg Med Chem 2023; 90:117350. [PMID: 37270903 DOI: 10.1016/j.bmc.2023.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
To develop matrix metalloproteinase inhibitors (MMPIs) for both therapy and medicinal imaging by fluorescence-based techniques or positron-emission tomography (PET), a small library of eighteen N-substituted N-arylsulfonamido d-valines were synthesized and their potency to inhibit two gelatinases (MMP-2, and MMP-9), two collagenases (MMP-8, and MMP-13) and macrophage elastase (MMP-12) was determined in a Structure-Activity-Relation study with ({4-[3-(5-methylthiophen-2-yl)-1,2,4-oxadiazol-5-yl]phenyl}sulfonyl)-d-valine (1) as a lead. All compounds were shown to be more potent MMP-2/-9 inhibitors (nanomolar range) compared to other tested MMPs. This is a remarkable result considering that a carboxylic acid group is the zinc binding moiety. The compound with a terminal fluoropropyltriazole group at the furan ring (P1' substituent) was only four times less potent in inhibiting MMP-2 activity than the lead compound 1, making this compound a promising probe for PET application (after using a prosthetic group approach to introduce fluorine-18). Compounds with a TEG spacer and a terminal azide or even a fluorescein moiety at the sulfonylamide N atom (P2' substituent) were almost as active as the lead structure 1, making the latter derivative a suitable fluorescence imaging tool.
Collapse
Affiliation(s)
- Christian Paul Konken
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany; Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Bernd Beutel
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Benjamin Schinor
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Jian Song
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Hanna Gerwien
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Eva Korpos
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Miriam Burmeister
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Michael Schäfers
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Lydia Sorokin
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany; Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany.
| |
Collapse
|
3
|
Baidya SK, Banerjee S, Adhikari N, Jha T. Selective Inhibitors of Medium-Size S1' Pocket Matrix Metalloproteinases: A Stepping Stone of Future Drug Discovery. J Med Chem 2022; 65:10709-10754. [PMID: 35969157 DOI: 10.1021/acs.jmedchem.1c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among various matrix metalloproteinases (MMPs), MMPs having medium-size S1' pockets are established as promising biomolecular targets for executing crucial roles in cancer, cardiovascular diseases, and neurodegenerative diseases. However, no such MMP inhibitors (MMPIs) are available to date as drug candidates despite a lot of continuous research work for more than three decades. Due to a high degree of structural resemblance among these MMPs, designing selective MMPIs is quite challenging. However, the variability and uniqueness of the S1' pockets of these MMPs make them promising targets for designing selective MMPIs. In this perspective, the overall structural aspects of medium-size S1' pocket MMPs including the unique binding patterns of enzyme-inhibitor interactions have been discussed in detail to acquire knowledge regarding selective inhibitor designing. This overall knowledge will surely be a curtain raiser for the designing of selective MMPIs as drug candidates in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Takeuchi T, Hayashi M, Tamita T, Nomura Y, Kojima N, Mitani A, Takeda T, Hitaka K, Kato Y, Kamitani M, Mima M, Toki H, Ohkubo M, Nozoe A, Kakinuma H. Discovery of Aryloxyphenyl-Heptapeptide Hybrids as Potent and Selective Matrix Metalloproteinase-2 Inhibitors for the Treatment of Idiopathic Pulmonary Fibrosis. J Med Chem 2022; 65:8493-8510. [PMID: 35687819 DOI: 10.1021/acs.jmedchem.2c00613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinase-2 (MMP2) is a zinc-dependent endopeptidase that plays important roles in the degradation of extracellular matrix proteins. MMP2 is considered to be an attractive target for the treatment of various diseases such as cancer, arthritis, and fibrosis. In this study, we have developed a novel class of MMP2-selective inhibitors by hybridizing the peptide that binds to a zinc ion and S2-S5 pockets with small molecules that bind to the S1' pocket. Structural modifications based on X-ray crystallography revealed that the introduction of 2,4-diaminobutanoic acid (Dab) at position 4 dramatically enhanced MMP2 selectivity by forming an electrostatic interaction with Glu130. After improving the metabolic and chemical stability, TP0556351 (9) was identified. It exhibited potent MMP2 inhibitory activity (IC50 = 0.20 nM) and extremely high selectivity. It suppressed the accumulation of collagen in a bleomycin-induced idiopathic pulmonary fibrosis model in mice, demonstrating the efficacy of MMP2-selective inhibitors for fibrosis.
Collapse
Affiliation(s)
| | - Masato Hayashi
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Tomoko Tamita
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Yusaku Nomura
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Naoki Kojima
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Akiko Mitani
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Takuya Takeda
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Yuki Kato
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | | | - Masashi Mima
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Hidetoh Toki
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | | | - Akiko Nozoe
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | | |
Collapse
|
5
|
Design and Synthesis of Water-Soluble and Potent MMP-13 Inhibitors with Activity in Human Osteosarcoma Cells. Int J Mol Sci 2021; 22:ijms22189976. [PMID: 34576138 PMCID: PMC8467962 DOI: 10.3390/ijms22189976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis is a degenerative disease, often resulting in chronic joint pain and commonly affecting elderly people. Current treatments with anti-inflammatory drugs are palliative, making the discovery of new treatments necessary. The inhibition of matrix metalloproteinase MMP-13 is a validated strategy to prevent the progression of this common joint disorder. We recently described polybrominated benzotriazole derivatives with nanomolar inhibitory activity and a promising selectivity profile against this collagenase. In this work, we have extended the study in order to explore the influence of bromine atoms and the nature of the S1′ heterocyclic interacting moiety on the solubility/selectivity balance of this type of compound. Drug target interactions have been assessed through a combination of molecular modeling studies and NMR experiments. Compound 9a has been identified as a water-soluble and highly potent inhibitor with activity in MG-63 human osteosarcoma cells.
Collapse
|
6
|
Gimeno A, Beltrán-Debón R, Mulero M, Pujadas G, Garcia-Vallvé S. Understanding the variability of the S1′ pocket to improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discov Today 2020; 25:38-57. [DOI: 10.1016/j.drudis.2019.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/23/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
7
|
Molecular Imaging Probes Based on Matrix Metalloproteinase Inhibitors (MMPIs). Molecules 2019; 24:molecules24162982. [PMID: 31426440 PMCID: PMC6719134 DOI: 10.3390/molecules24162982] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases which are secreted or anchored in the cell membrane and are capable of degrading the multiple components of the extracellular matrix (ECM). MMPs are frequently overexpressed or highly activated in numerous human diseases. Owing to the important role of MMPs in human diseases, many MMP inhibitors (MMPIs) have been developed as novel therapeutics, and some of them have entered clinical trials. However, so far, only one MMPI (doxycycline) has been approved by the FDA. Therefore, the evaluation of the activity of a specific subset of MMPs in human diseases using clinically relevant imaging techniques would be a powerful tool for the early diagnosis and assessment of the efficacy of therapy. In recent years, numerous MMPIs labeled imaging agents have emerged. This article begins by providing an overview of the MMP subfamily and its structure and function. The latest advances in the design of subtype selective MMPIs and their biological evaluation are then summarized. Subsequently, the potential use of MMPI-labeled diagnostic agents in clinical imaging techniques are discussed, including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging (OI). Finally, this article concludes with future perspectives and clinical utility.
Collapse
|
8
|
Lenci E, Innocenti R, Di Francescantonio T, Menchi G, Bianchini F, Contini A, Trabocchi A. Identification of highly potent and selective MMP2 inhibitors addressing the S1′ subsite with d-proline-based compounds. Bioorg Med Chem 2019; 27:1891-1902. [DOI: 10.1016/j.bmc.2019.03.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 01/19/2023]
|
9
|
Pastor M, Zapico JM, Coderch C, Maslyk M, Panchuk R, de Pascual-Teresa B, Ramos A. From a MMP2/CK2 multitarget approach to the identification of potent and selective MMP13 inhibitors. Org Biomol Chem 2019; 17:916-929. [PMID: 30629065 DOI: 10.1039/c8ob02990c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this article, we describe our efforts in the search of MMP2/CK2 dual targeting inhibitors. We have followed a rational drug design approach based on our experience in the selective inhibition of these two enzymes. We have successfully obtained highly active MMP2 (10, IC50 = 70 nM; 11, IC50 = 100 nM) and CK2 (16a, IC50 = 500 nM) inhibitors. However, structural fine tuning of these small molecules to simultaneously target both enzymes turned out to be an unattainable goal. Unexpectedly, we were lucky to identify new and selective MMP13 inhibitors (10, IC50 = 3.7 nM and 11, IC50 = 5.6 nM) with a novel TBB-derived scaffold. These compounds constitute an interesting starting point for further optimization.
Collapse
Affiliation(s)
- Miryam Pastor
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
10
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
11
|
Mangiatordi GF, Guzzo T, Rossano EC, Trisciuzzi D, Alberga D, Fasciglione G, Coletta M, Topai A, Nicolotti O. Design, Synthesis, and Biological Evaluation of Tetrahydro-β-carboline Derivatives as Selective Sub-Nanomolar Gelatinase Inhibitors. ChemMedChem 2018; 13:1343-1352. [PMID: 29893479 DOI: 10.1002/cmdc.201800237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/03/2018] [Indexed: 01/09/2023]
Abstract
Targeting matrix metalloproteinases (MMPs) is a pursued strategy for treating several pathological conditions, such as multiple sclerosis and cancer. Herein, a series of novel tetrahydro-β-carboline derivatives with outstanding inhibitory activity toward MMPs are present. In particular, compounds 9 f, 9 g, 9 h and 9 i show sub-nanomolar IC50 values. Interestingly, compounds 9 g and 9 i also provide remarkable selectivity toward gelatinases; IC50 =0.15 nm for both toward MMP-2 and IC50 =0.63 and 0.58 nm, respectively, toward MMP-9. Molecular docking simulations, performed by employing quantum mechanics based partial charges, shed light on the rationale behind binding involving specific interactions with key residues of S1' and S3' domains. Taken together, these studies indicate that tetrahydro-β-carboline represents a promising scaffold for the design of novel inhibitors able to target MMPs and selectively bias gelatinases, over the desirable range of the pharmacokinetics spectrum.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Via Orabona, 4, 70126, Bari, Italy.,Istituto Tumori IRCCS Giovanni Paolo II, Bari, Italy
| | - Tatiana Guzzo
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via della Ricerca Scientifica snc, Ed. PP2-Macroarea Scienze, 00133, Rome, Italy
| | - Eugenio Claudio Rossano
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via della Ricerca Scientifica snc, Ed. PP2-Macroarea Scienze, 00133, Rome, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Via Orabona, 4, 70126, Bari, Italy
| | - Giovanni Fasciglione
- Dipartimento di Scienze cliniche e Medicina Traslazionale, Università di Roma "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Massimiliano Coletta
- Dipartimento di Scienze cliniche e Medicina Traslazionale, Università di Roma "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Alessandra Topai
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via della Ricerca Scientifica snc, Ed. PP2-Macroarea Scienze, 00133, Rome, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Via Orabona, 4, 70126, Bari, Italy
| |
Collapse
|
12
|
Zhong Y, Lu YT, Sun Y, Shi ZH, Li NG, Tang YP, Duan JA. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin Drug Discov 2017; 13:75-87. [PMID: 29088927 DOI: 10.1080/17460441.2018.1398732] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The overexpression of matrix metalloproteinase (MMP) plays an important role in the context of tumor invasion and metastasis, and MMP-2 has been characterized as the most validated target for cancer. Therefore, it is necessary to design matrix metalloproteinase inhibitors (MMPIs) that would be active and selective against MMP-2 but non-selective toward other MMPs. Areas covered: This article clearly describes the structural character of MMP-2 followed by a review of the recent development of selective MMP-2 inhibitors based on their basic structures. Expert opinion: Over the past 30 years, MMPs have been considered to be attractive cancer targets, and several different types of synthetic inhibitors have been identified as anticancer agents, but only a small number of small MMPIs have been examined in clinical trials, and none of these molecules has been established as anticancer drugs due to their adverse effects. One major possibility is that the MMPIs used in clinical trials were broad-spectrum drugs that also inhibited the anti-tumor effects and influenced the mediation of the normal physiological processes of MMPs. MMP-2 has recently been characterized as the most validated target for cancer. Therefore, the design and synthesis of selective MMP-2 inhibitors would be helpful for the treatment of cancer.
Collapse
Affiliation(s)
- Yue Zhong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yu-Ting Lu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Ying Sun
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China.,b Department of Organic Chemistry , China Pharmaceutical University , Nanjing , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China.,c Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and College of Pharmacy , Shaanxi University of Chinese Medicine , Xianyang , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| |
Collapse
|
13
|
Scannevin RH, Alexander R, Haarlander TM, Burke SL, Singer M, Huo C, Zhang YM, Maguire D, Spurlino J, Deckman I, Carroll KI, Lewandowski F, Devine E, Dzordzorme K, Tounge B, Milligan C, Bayoumy S, Williams R, Schalk-Hihi C, Leonard K, Jackson P, Todd M, Kuo LC, Rhodes KJ. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J Biol Chem 2017; 292:17963-17974. [PMID: 28860188 DOI: 10.1074/jbc.m117.806075] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/11/2017] [Indexed: 11/06/2022] Open
Abstract
Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets.
Collapse
Affiliation(s)
- Robert H Scannevin
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Richard Alexander
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | | | - Sharon L Burke
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Monica Singer
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Cuifen Huo
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Yue-Mei Zhang
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Diane Maguire
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - John Spurlino
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Ingrid Deckman
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Karen I Carroll
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Frank Lewandowski
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Eric Devine
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Keli Dzordzorme
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Brett Tounge
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Cindy Milligan
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Shariff Bayoumy
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Robyn Williams
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Celine Schalk-Hihi
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Kristi Leonard
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Paul Jackson
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Matthew Todd
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Lawrence C Kuo
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Kenneth J Rhodes
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| |
Collapse
|
14
|
Xie XW, Wan RZ, Liu ZP. Recent Research Advances in Selective Matrix Metalloproteinase-13 Inhibitors as Anti-Osteoarthritis Agents. ChemMedChem 2017; 12:1157-1168. [DOI: 10.1002/cmdc.201700349] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/04/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Xin-Wen Xie
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan 250012 P.R. China
| | - Ren-Zhong Wan
- College of Animal Science & Veterinary Medicine; Shandong Agricultural University; 61 Daizong Street Taian 271018 P.R. China
| | - Zhao-Peng Liu
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan 250012 P.R. China
| |
Collapse
|
15
|
Kasperkiewicz P, Poreba M, Groborz K, Drag M. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. FEBS J 2017; 284:1518-1539. [PMID: 28052575 PMCID: PMC7164106 DOI: 10.1111/febs.14001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022]
Abstract
Proteases are enzymes that hydrolyze the peptide bond of peptide substrates and proteins. Despite significant progress in recent years, one of the greatest challenges in the design and testing of substrates, inhibitors and activity‐based probes for proteolytic enzymes is achieving specificity toward only one enzyme. This specificity is particularly important if the enzyme is present with other enzymes with a similar catalytic mechanism and substrate specificity but completely different functionality. The cross‐reactivity of substrates, inhibitors and activity‐based probes with other enzymes can significantly impair or even prevent investigations of a target protease. In this review, we describe important concepts and the latest challenges, focusing mainly on peptide‐based substrate specificity techniques used to distinguish individual enzymes within major protease families.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
16
|
Abstract
Matrix metalloproteases are multidomain enzymes with a remarkable proteolytic activity located in the extracellular environment. Their catalytic activity and structural properties have been intensively studied during the last few decades using both experimental and theoretical approaches, but many open questions still remain. Extensive molecular dynamics simulations enable the sampling of the configurational space of a molecular system, thus contributing to the characterization of the structure, dynamics, and ligand binding properties of a particular MMP. Based on previous computational experience, we provide in this chapter technical and methodological guidelines that may be useful to and stimulate other researchers to perform molecular dynamics simulations to help address unresolved questions concerning the molecular mode of action of MMPs.
Collapse
Affiliation(s)
- Natalia Díaz
- Dpto. Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain.
| | - Dimas Suárez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
17
|
Robust design of some selective matrix metalloproteinase-2 inhibitors over matrix metalloproteinase-9 through in silico/fragment-based lead identification and de novo lead modification: Syntheses and biological assays. Bioorg Med Chem 2016; 24:4291-4309. [DOI: 10.1016/j.bmc.2016.07.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/28/2022]
|
18
|
de Souza RA, Díaz N, Nagem RAP, Ferreira RS, Suárez D. Unraveling the distinctive features of hemorrhagic and non-hemorrhagic snake venom metalloproteinases using molecular simulations. J Comput Aided Mol Des 2015; 30:69-83. [PMID: 26676823 DOI: 10.1007/s10822-015-9889-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/13/2015] [Indexed: 11/26/2022]
Abstract
Snake venom metalloproteinases are important toxins that play fundamental roles during envenomation. They share a structurally similar catalytic domain, but with diverse hemorrhagic capabilities. To understand the structural basis for this difference, we build and compare two dynamical models, one for the hemorrhagic atroxlysin-I from Bothrops atrox and the other for the non-hemorraghic leucurolysin-a from Bothrops leucurus. The analysis of the extended molecular dynamics simulations shows some changes in the local structure, flexibility and surface determinants that can contribute to explain the different hemorrhagic activity of the two enzymes. In agreement with previous results, the long Ω-loop (from residue 149 to 177) has a larger mobility in the hemorrhagic protein. In addition, we find some potentially-relevant differences at the base of the S1' pocket, what may be interesting for the structure-based design of new anti-venom agents. However, the sharpest differences in the computational models of atroxlysin-I and leucurolysin-a are observed in the surface electrostatic potential around the active site region, suggesting thus that the hemorrhagic versus non-hemorrhagic activity is probably determined by protein surface determinants.
Collapse
Affiliation(s)
- Raoni Almeida de Souza
- Depto de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, 3010-010, Brazil
| | - Natalia Díaz
- C/ Julián Clavería 8. Dpto. de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Asturias, Spain
| | - Ronaldo Alves Pinto Nagem
- Avenida Antônio Carlos 6627, Depto. de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rafaela Salgado Ferreira
- Avenida Antônio Carlos 6627, Depto. de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Dimas Suárez
- C/ Julián Clavería 8. Dpto. de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
19
|
Zapico JM, Puckowska A, Filipiak K, Coderch C, de Pascual-Teresa B, Ramos A. Design and synthesis of potent hydroxamate inhibitors with increased selectivity within the gelatinase family. Org Biomol Chem 2015; 13:142-56. [DOI: 10.1039/c4ob01516a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triazole-based inhibitors with high potency and selectivity for MMP-2 were obtained through a click chemistry approach.
Collapse
Affiliation(s)
- José María Zapico
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- 28668 Madrid
- Spain
| | - Anna Puckowska
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- 28668 Madrid
- Spain
| | - Kamila Filipiak
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- 28668 Madrid
- Spain
| | - Claire Coderch
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- 28668 Madrid
- Spain
| | | | - Ana Ramos
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- 28668 Madrid
- Spain
| |
Collapse
|
20
|
Wang Y, Yu SJ, Li YX, Luo HS. Expression and clinical significance of matrix metalloproteinase-17 and -25 in gastric cancer. Oncol Lett 2014; 9:671-676. [PMID: 25621036 PMCID: PMC4301483 DOI: 10.3892/ol.2014.2747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the expression and clinicopathological features of matrix metalloproteinase 17 (MMP17; also known as MT4-MMP) and MMP25 (also known as MT6-MMP) in gastric cancer. Immunohistochemistry and reverse transcription-quantitative polymerase chain reaction were used to detect the expression of MMP17 and MMP25 in 42 cases of gastric carcinoma and normal tissues, and 40 cases of atrophic gastritis. The expression of MMP17 in the normal gastric and atrophic gastritis tissues was significantly lower than that in the gastric cancer tissues (P<0.05). The expression of MMP25 in the gastric cancer and atrophic gastritis tissues was markedly higher compared with the normal gastric tissues (P<0.05). The expression of MMP17 and MMP25 was significantly associated with the depth of tumor invasion, lymph node metastasis and serous membrane involvement (P<0.05), but not with patient age and gender, or lesion length, site and histological grade (P>0.05). Therefore, this indicates that the expression of MMP17 and MMP25 is increased with the degree of progress of gastric carcinoma. The detection of MMP17 and MMP25 expression may have clinical value in predicting the prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Jie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xia Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - He-Sheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
21
|
Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014; 13:904-27. [DOI: 10.1038/nrd4390] [Citation(s) in RCA: 524] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Fabre B, Ramos A, de Pascual-Teresa B. Targeting Matrix Metalloproteinases: Exploring the Dynamics of the S1′ Pocket in the Design of Selective, Small Molecule Inhibitors. J Med Chem 2014; 57:10205-19. [DOI: 10.1021/jm500505f] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Benjamin Fabre
- Departamento de Química
y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, Urbanización Monteprincipe, 28668 Madrid, Spain
| | - Ana Ramos
- Departamento de Química
y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, Urbanización Monteprincipe, 28668 Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química
y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, Urbanización Monteprincipe, 28668 Madrid, Spain
| |
Collapse
|
23
|
Fabre B, Filipiak K, Coderch C, Zapico JM, Carbajo RJ, Schott AK, Pineda-Lucena A, de Pascual-Teresa B, Ramos A. New clicked thiirane derivatives as gelatinase inhibitors: the relevance of the P1′ segment. RSC Adv 2014. [DOI: 10.1039/c3ra46402d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|