1
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
2
|
Sørensen KK, Mishra NK, Paprocki MP, Mehrotra A, Jensen KJ. High-Performance Reversed-Phase Flash Chromatography Purification of Peptides and Chemically Modified Insulins. Chembiochem 2021; 22:1818-1822. [PMID: 33443297 DOI: 10.1002/cbic.202000826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Preparative reversed-phase HPLC is the established method for the purification of peptides, but has significant limitations. We systematically investigated the use of high-performance reversed-phase flash chromatography (HPFC) to rapidly purify laboratory-scale quantities of crude, synthetic peptides and chemically modified insulins. We demonstrated these methods for a diverse set of peptides, including short, medium, and long peptides. Depending on the purity profile of the peptide, HPFC can be used either as the sole purification method, or as a pre-purification method prior to final HPLC purification. Furthermore, HPFC is suitable for the purification of peptides that are not fully in solution. We provide guidelines for the HPFC of synthetic peptides and small proteins, including the choice of columns, eluents, and gradients. We believe that HPFC is a valuable alternative to HPLC purification of peptides and small proteins.
Collapse
Affiliation(s)
- Kasper K Sørensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Narendra K Mishra
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Maciej P Paprocki
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | | | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
3
|
Campanero-Rhodes MA, Palma AS, Menéndez M, Solís D. Microarray Strategies for Exploring Bacterial Surface Glycans and Their Interactions With Glycan-Binding Proteins. Front Microbiol 2020; 10:2909. [PMID: 32010066 PMCID: PMC6972965 DOI: 10.3389/fmicb.2019.02909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Bacterial surfaces are decorated with distinct carbohydrate structures that may substantially differ among species and strains. These structures can be recognized by a variety of glycan-binding proteins, playing an important role in the bacteria cross-talk with the host and invading bacteriophages, and also in the formation of bacterial microcolonies and biofilms. In recent years, different microarray approaches for exploring bacterial surface glycans and their recognition by proteins have been developed. A main advantage of the microarray format is the inherent miniaturization of the method, which allows sensitive and high-throughput analyses with very small amounts of sample. Antibody and lectin microarrays have been used for examining bacterial glycosignatures, enabling bacteria identification and differentiation among strains. In addition, microarrays incorporating bacterial carbohydrate structures have served to evaluate their recognition by diverse host/phage/bacterial glycan-binding proteins, such as lectins, effectors of the immune system, or bacterial and phagic cell wall lysins, and to identify antigenic determinants for vaccine development. The list of samples printed in the arrays includes polysaccharides, lipopoly/lipooligosaccharides, (lipo)teichoic acids, and peptidoglycans, as well as sequence-defined oligosaccharide fragments. Moreover, microarrays of cell wall fragments and entire bacterial cells have been developed, which also allow to study bacterial glycosylation patterns. In this review, examples of the different microarray platforms and applications are presented with a view to give the current state-of-the-art and future prospects in this field.
Collapse
Affiliation(s)
- María Asunción Campanero-Rhodes
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Angelina Sa Palma
- UCIBIO, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Margarita Menéndez
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Solís
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Duan L, Pei J, Ren Y, Li H, Zhou X, Zhu H, Duanmu D, Wen J, Mysore KS, Cao Y, Zhang Z. A Dihydroflavonol-4-Reductase-Like Protein Interacts with NFR5 and Regulates Rhizobial Infection in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:401-412. [PMID: 30295579 DOI: 10.1094/mpmi-04-18-0104-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In almost all symbiotic interactions between rhizobia and leguminous plants, host flavonoid-induced synthesis of Nod factors in rhizobia is required to initiate symbiotic response in plants. In this study, we found that Lotus japonicus Nod factor receptor 5 (LjNFR5) might directly regulate flavonoid biosynthesis during symbiotic interaction with rhizobia. A yeast two-hybrid analysis revealed that a dihydroflavonol-4-reductase-like protein (LjDFL1) interacts with LjNFR5. The interaction between MtDFL1 and MtNFP, two Medicago truncatula proteins with homology to LjDFL1 and LjNFR5, respectively, was also shown, suggesting that interaction between these two proteins might be conserved in different legumes. LjDFL1 was highly expressed in root hairs and epidermal cells of root tips. Lotus ljdfl1 mutants and Medicago mtdfl1 mutants produced significantly fewer infection threads (ITs) than the wild-type control plants following rhizobial treatment. Furthermore, the roots of stable transgenic L. japonicus plants overexpressing LjDFL1 formed more ITs than control roots after exposure to rhizobia. These data indicated that LjDFL1 is a positive regulator of symbiotic signaling. However, the expression of LjDFL1 was suppressed by rhizobial treatment, suggesting that a negative feedback loop might be involved in regulation of the symbiotic response in L. japonicus.
Collapse
Affiliation(s)
- Liujian Duan
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Junqing Pei
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Yaping Ren
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Hao Li
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Xiangzhen Zhou
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Hui Zhu
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Deqiang Duanmu
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Jiangqi Wen
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Kirankumar S Mysore
- 2 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, U.S.A
| | - Yangrong Cao
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Zhongming Zhang
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| |
Collapse
|
5
|
Abstract
In the last decade, more and more plant receptors for complex carbohydrate structures have been described. However, studies on receptor binding to glycan ligands are often hampered due to the technical challenge to obtain pure preparations of homogeneous carbohydrate ligands such as bacterial peptidoglycan (PGN) in amounts suitable for studying protein-glycan interactions. Also, most approaches rely on the availability of defined soluble ligands, which in the case of glycans can rarely be synthesized but have to be purified from the respective microorganism. In this chapter, we describe the purification of complex PGN from sources such as gram-positive bacteria, from which PGN isolation is facilitated due to its larger content in their cell wall. Insoluble PGN can subsequently be used in simple carbohydrate pull-down assays to test for interaction with plant proteins. In this respect, lysin motif (LysM)-domain containing proteins are of particular interest. All plant receptors described to date to be involved in the perception of N-Acetylglucosamine-containing ligands (such as PGN or chitin) have been shown to belong to this protein class. Thus, this chapter will also include the production of recombinant LysM proteins to analyze their PGN interaction.
Collapse
|
6
|
Gough C, Cottret L, Lefebvre B, Bono JJ. Evolutionary History of Plant LysM Receptor Proteins Related to Root Endosymbiosis. FRONTIERS IN PLANT SCIENCE 2018; 9:923. [PMID: 30022986 PMCID: PMC6039847 DOI: 10.3389/fpls.2018.00923] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/11/2018] [Indexed: 05/03/2023]
Abstract
LysM receptor-like kinases (LysM-RLKs), which are specific to plants, can control establishment of both the arbuscular mycorrhizal (AM) and the rhizobium-legume (RL) symbioses in response to signal molecules produced, respectively, by the fungal and bacterial symbiotic partners. While most studies on these proteins have been performed in legume species, there are also important findings that demonstrate the roles of LysM-RLKs in controlling symbiosis in non-legume plants. Phylogenomic studies, which have revealed the presence or absence of certain LysM-RLKs among different plant species, have provided insight into the evolutionary mechanisms underlying both the acquisition and the loss of symbiotic properties. The role of a key nodulation LysM-RLK, NFP/NFR5, in legume plants has thus probably been co-opted from an ancestral role in the AM symbiosis, and has been lost in most plant species that have lost the ability to establish the AM or the RL symbiosis. Another LysM-RLK, LYK3/NFR1, that controls the RL symbiosis probably became neo-functionalised following two rounds of gene duplication. Evidence suggests that a third LysM-RLK, LYR3/LYS12, is also implicated in perceiving microbial symbiotic signals, and this protein could have roles in symbiosis and/or plant immunity in different plant species. By focusing on these three LysM-RLKs that are widespread in plants we review their evolutionary history and what this can tell us about the evolution of both the RL and the AM symbioses.
Collapse
|
7
|
Igolkina AA, Porozov YB, Chizhevskaya EP, Andronov EE. Structural Insight Into the Role of Mutual Polymorphism and Conservatism in the Contact Zone of the NFR5-K1 Heterodimer With the Nod Factor. FRONTIERS IN PLANT SCIENCE 2018; 9:344. [PMID: 29706972 PMCID: PMC5909492 DOI: 10.3389/fpls.2018.00344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/28/2018] [Indexed: 05/22/2023]
Abstract
Sandwich-like docking configurations of the heterodimeric complex of NFR5 and K1 Vicia sativa receptor-like kinases together with the putative ligand, Nod factor (NF) of Rhizobium leguminosarum bv. viciae, were modeled and two of the most probable configurations were assessed through the analysis of the mutual polymorphisms and conservatism. We carried out this analysis based on the hypothesis that in a contact zone of two docked components (proteins or ligands) the population polymorphism or conservatism is mutual, i.e., the variation in one component has a reflected variation in the other component. The population material of 30 wild-growing V. sativa (leaf pieces) was collected from a large field (uncultivated for the past 25-years) and pooled; form this pool, 100 randomly selected cloned fragments of NFR5 gene and 100 of K1 gene were sequenced by the Sanger method. Congruence between population trees of NFR5 and K1 haplotypes allowed us to select two respective haplotypes, build their 3D structures, and perform protein-protein docking. In a separate simulation, the protein-ligand docking between NFR5 and NF was carried out. We merged the results of the two docking experiments and extracted NFR5-NF-K1 complexes, in which NF was located within the cavity between two receptors. Molecular dynamics simulations indicated two out of six complexes as stable. Regions of mutual polymorphism in the contact zone of one complex overlapped with known NF structural variations produced by R. leguminosarum bv. viciae. A total of 74% of the contact zone of another complex contained mutually polymorphic and conservative areas. Common traits of the obtained two stable structures allowed us to hypothesize the functional role of three-domain structure of plant LysM-RLKs in their heteromers.
Collapse
Affiliation(s)
- A. A. Igolkina
- Laboratory of Microbiological Monitoring and Bioremediation of Soil, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Mathematical Biology and Bioinformatics Laboratory, Institute of Applied Mathematics and Mechanics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- *Correspondence: A. A. Igolkina
| | - Yu B. Porozov
- The Laboratory of Bioinformatics, ITMO University, St. Petersburg, Russia
- The Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - E. P. Chizhevskaya
- Laboratory of Microbiological Monitoring and Bioremediation of Soil, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - E. E. Andronov
- Laboratory of Microbiological Monitoring and Bioremediation of Soil, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Laboratory of Biology and Biochemistry of Soils, VV Dokuchaev Soil Science Institute, Moscow, Russia
- Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
8
|
Sánchez-Vallet A, Mesters JR, Thomma BP. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol Rev 2015; 39:171-83. [DOI: 10.1093/femsre/fuu003] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|