1
|
Spiniello M, Scalf M, Casamassimi A, Abbondanza C, Smith LM. Towards an Ideal In Cell Hybridization-Based Strategy to Discover Protein Interactomes of Selected RNA Molecules. Int J Mol Sci 2022; 23:ijms23020942. [PMID: 35055128 PMCID: PMC8779001 DOI: 10.3390/ijms23020942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
RNA-binding proteins are crucial to the function of coding and non-coding RNAs. The disruption of RNA–protein interactions is involved in many different pathological states. Several computational and experimental strategies have been developed to identify protein binders of selected RNA molecules. Amongst these, ‘in cell’ hybridization methods represent the gold standard in the field because they are designed to reveal the proteins bound to specific RNAs in a cellular context. Here, we compare the technical features of different ‘in cell’ hybridization approaches with a focus on their advantages, limitations, and current and potential future applications.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, 80131 Naples, Italy
- Correspondence: (M.S.); (A.C.)
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.S.); (L.M.S.)
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Correspondence: (M.S.); (A.C.)
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.S.); (L.M.S.)
| |
Collapse
|
2
|
Single and Combined Methods to Specifically or Bulk-Purify RNA-Protein Complexes. Biomolecules 2020; 10:biom10081160. [PMID: 32784769 PMCID: PMC7464009 DOI: 10.3390/biom10081160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
The ribonome interconnects the proteome and the transcriptome. Specific biology is situated at this interface, which can be studied in bulk using omics approaches or specifically by targeting an individual protein or RNA species. In this review, we focus on both RNA- and ribonucleoprotein-(RNP) centric methods. These methods can be used to study the dynamics of the ribonome in response to a stimulus or to identify the proteins that interact with a specific RNA species. The purpose of this review is to provide and discuss an overview of strategies to cross-link RNA to proteins and the currently available RNA- and RNP-centric approaches to study RNPs. We elaborate on some major challenges common to most methods, involving RNP yield, purity and experimental cost. We identify the origin of these difficulties and propose to combine existing approaches to overcome these challenges. The solutions provided build on the recently developed organic phase separation protocols, such as Cross-Linked RNA eXtraction (XRNAX), orthogonal organic phase separation (OOPS) and Phenol-Toluol extraction (PTex).
Collapse
|
3
|
Machyna M, Kiefer L, Simon MD. Enhanced nucleotide chemistry and toehold nanotechnology reveals lncRNA spreading on chromatin. Nat Struct Mol Biol 2020; 27:297-304. [PMID: 32157249 DOI: 10.1038/s41594-020-0390-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Understanding the targeting and spreading patterns of long non-coding RNAs (lncRNAs) on chromatin requires a technique that can detect both high-intensity binding sites and reveal genome-wide changes in spreading patterns with high precision and confidence. Here we determine lncRNA localization using biotinylated locked nucleic acid (LNA)-containing oligonucleotides with toehold architecture capable of hybridizing to target RNA through strand-exchange reaction. During hybridization, a protecting strand competitively displaces contaminating species, leading to highly specific RNA capture of individual RNAs. Analysis of Drosophila roX2 lncRNA using this approach revealed that heat shock, unlike the unfolded protein response, leads to reduced spreading of roX2 on the X chromosome, but surprisingly also to relocalization to sites on autosomes. Our results demonstrate that this improved hybridization capture approach can reveal previously uncharacterized changes in the targeting and spreading of lncRNAs on chromatin.
Collapse
Affiliation(s)
- Martin Machyna
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.,Chemical Biology Institute, Yale University, West Haven, CT, USA
| | - Lea Kiefer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.,Chemical Biology Institute, Yale University, West Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA. .,Chemical Biology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
4
|
Spiniello M, Knoener RA, Steinbrink MI, Yang B, Cesnik AJ, Buxton KE, Scalf M, Jarrard DF, Smith LM. HyPR-MS for Multiplexed Discovery of MALAT1, NEAT1, and NORAD lncRNA Protein Interactomes. J Proteome Res 2018; 17:3022-3038. [PMID: 29972301 DOI: 10.1021/acs.jproteome.8b00189] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RNA-protein interactions are integral to the regulation of gene expression. RNAs have diverse functions and the protein interactomes of individual RNAs vary temporally, spatially, and with physiological context. These factors make the global acquisition of individual RNA-protein interactomes an essential endeavor. Although techniques have been reported for discovery of the protein interactomes of specific RNAs they are largely laborious, costly, and accomplished singly in individual experiments. We developed HyPR-MS for the discovery and analysis of the protein interactomes of multiple RNAs in a single experiment while also reducing design time and improving efficiencies. Presented here is the application of HyPR-MS to simultaneously and selectively isolate the interactomes of lncRNAs MALAT1, NEAT1, and NORAD. Our analysis features the proteins that potentially contribute to both known and previously undiscovered roles of each lncRNA. This platform provides a powerful new multiplexing tool for the efficient and cost-effective elucidation of specific RNA-protein interactomes.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Rachel A Knoener
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Maisie I Steinbrink
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Molecular and Environmental Toxicology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Bing Yang
- Department of Urology , University of Wisconsin School of Medicine and Public Health , Madison , Wisconsin 53705 , United States
| | - Anthony J Cesnik
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Katherine E Buxton
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Mark Scalf
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - David F Jarrard
- Molecular and Environmental Toxicology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Urology , University of Wisconsin School of Medicine and Public Health , Madison , Wisconsin 53705 , United States.,Carbone Comprehensive Cancer Center , University of Wisconsin-Madison , Madison , Wisconsin 53792 , United States
| | - Lloyd M Smith
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Genome Center of Wisconsin , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
5
|
Guillen-Ahlers H, Rao PK, Perumalla DS, Montoya MJ, Jadhav AYL, Shortreed MR, Smith LM, Olivier M. Adaptation of Hybridization Capture of Chromatin-associated Proteins for Proteomics to Mammalian Cells. J Vis Exp 2018. [PMID: 29912191 DOI: 10.3791/57140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The hybridization capture of chromatin-associated proteins for proteomics (HyCCAPP) technology was initially developed to uncover novel DNA-protein interactions in yeast. It allows analysis of a target region of interest without the need for prior knowledge about likely proteins bound to the target region. This, in theory, allows HyCCAPP to be used to analyze any genomic region of interest, and it provides sufficient flexibility to work in different cell systems. This method is not meant to study binding sites of known transcription factors, a task better suited for Chromatin Immunoprecipitation (ChIP) and ChIP-like methods. The strength of HyCCAPP lies in its ability to explore DNA regions for which there is limited or no knowledge about the proteins bound to it. It can also be a convenient method to avoid biases (present in ChIP-like methods) introduced by protein-based chromatin enrichment using antibodies. Potentially, HyCCAPP can be a powerful tool to uncover truly novel DNA-protein interactions. To date, the technology has been predominantly applied to yeast cells or to high copy repeat sequences in mammalian cells. In order to become the powerful tool we envision, HyCCAPP approaches need to be optimized to efficiently capture single-copy loci in mammalian cells. Here, we present our adaptation of the initial yeast HyCCAPP capture protocol to human cell lines, and show that single-copy chromatin regions can be efficiently isolated with this modified protocol.
Collapse
Affiliation(s)
- Hector Guillen-Ahlers
- Department of Genetics, Texas Biomedical Research Institute; Department of Internal Medicine-Molecular Medicine, Wake Forest University School of Medicine
| | - Prahlad K Rao
- Department of Genetics, Texas Biomedical Research Institute
| | | | | | | | | | | | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute; Department of Internal Medicine-Molecular Medicine, Wake Forest University School of Medicine;
| |
Collapse
|
6
|
Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry. Sci Rep 2017; 7:16965. [PMID: 29208937 PMCID: PMC5717263 DOI: 10.1038/s41598-017-16793-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023] Open
Abstract
HIV-1 replication requires myriad interactions between cellular proteins and the viral unspliced RNA. These interactions are important in archetypal RNA processes such as transcription and translation as well as for more specialized functions including alternative splicing and packaging of unspliced genomic RNA into virions. We present here a hybridization capture strategy for purification of unspliced full-length HIV RNA-protein complexes preserved in vivo by formaldehyde crosslinking, and coupled with mass spectrometry to identify HIV RNA-protein interactors in HIV-1 infected cells. One hundred eighty-nine proteins were identified to interact with unspliced HIV RNA including Rev and Gag/Gag-Pol, 24 host proteins previously shown to bind segments of HIV RNA, and over 90 proteins previously shown to impact HIV replication. Further analysis using siRNA knockdown techniques against several of these proteins revealed significant changes to HIV expression. These results demonstrate the utility of the approach for the discovery of host proteins involved in HIV replication. Additionally, because this strategy only requires availability of 30 nucleotides of the HIV-RNA for hybridization with a capture oligonucleotide, it is readily applicable to any HIV system of interest regardless of cell type, HIV-1 virus strain, or experimental perturbation.
Collapse
|
7
|
Buxton KE, Kennedy-Darling J, Shortreed MR, Zaidan NZ, Olivier M, Scalf M, Sridharan R, Smith LM. Elucidating Protein-DNA Interactions in Human Alphoid Chromatin via Hybridization Capture and Mass Spectrometry. J Proteome Res 2017; 16:3433-3442. [PMID: 28704058 DOI: 10.1021/acs.jproteome.7b00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The centromere is the chromosomal locus where the kinetochore forms and is critical for ensuring proper segregation of sister chromatids during cell division. A substantial amount of effort has been devoted to understanding the characteristic features and roles of the centromere, yet some fundamental aspects of the centromere, such as the complete list of elements that define it, remain obscure. It is well-known that human centromeres include a highly repetitive class of DNA known as alpha satellite, or alphoid, DNA. We present here the first DNA-centric examination of human protein-alpha satellite interactions, employing an approach known as HyCCAPP (hybridization capture of chromatin-associated proteins for proteomics) to identify the protein components of alphoid chromatin in a human cell line. Using HyCCAPP, cross-linked alpha satellite chromatin was isolated from cell lysate, and captured proteins were analyzed via mass spectrometry. After being compared to proteins identified in control pulldown experiments, 90 proteins were identified as enriched at alphoid DNA. This list included many known centromere-binding proteins in addition to multiple novel alpha satellite-binding proteins, such as LRIF1, a heterochromatin-associated protein. The ability of HyCCAPP to reveal both known as well as novel alphoid DNA-interacting proteins highlights the validity and utility of this approach.
Collapse
Affiliation(s)
| | | | | | | | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute , San Antonio, Texas 78227, United States
| | | | | | | |
Collapse
|
8
|
Dai Y, Kennedy-Darling J, Shortreed MR, Scalf M, Gasch AP, Smith LM. Multiplexed Sequence-Specific Capture of Chromatin and Mass Spectrometric Discovery of Associated Proteins. Anal Chem 2017; 89:7841-7846. [PMID: 28654248 DOI: 10.1021/acs.analchem.7b01784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Comprehensive understanding of a gene's expression and regulation at the molecular level requires identification of all proteins interacting with the gene. HyCCAPP (Hybridization Capture of Chromatin Associated Proteins for Proteomics) is an approach that uses single-stranded DNA oligonucleotides to capture specific genomic sequences in cross-linked chromatin fragments and identify associated proteins by mass spectrometry. Previous studies have shown HyCCAPP to provide useful information on protein-DNA interactions, revealing the proteins associated with the GAL1-10 region in yeast. We present here a multiplexed version of HyCCAPP. Utilizing a toehold-mediated capture/release strategy, HyCCAPP is targeted to multiple genomic loci in parallel, and the protein binders at each locus are eluted in a programmable and selective fashion. Multiplexed HyCCAPP was applied to four genes (25S rDNA, ARX1, CTT1, and RPL30) in S. cerevisiae under normal and stressed conditions. Capture and release efficiencies and specificities were comparable to those obtained without multiplexing. Using mass spectrometry-based bottom-up proteomics, hundreds of proteins were discovered at each locus in each condition. Statistical analysis revealed 34-88 enriched proteins in each gene capture. Many of these proteins had expected functions, including DNA-related and ribosome biogenesis-associated activities. Multiplexed HyCCAPP provides a useful strategy for the identification of proteins interacting with specific chromatin regions.
Collapse
Affiliation(s)
- Yunxiang Dai
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Julia Kennedy-Darling
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin , 425 Henry Mall, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States.,Genome Center of Wisconsin, University of Wisconsin , 425G Henry Mall, Room 3420, Madison, Wisconsin 53706, United States
| |
Collapse
|