1
|
Pradhan S, Apaydin S, Bucevičius J, Gerasimaitė R, Kostiuk G, Lukinavičius G. Sequence-specific DNA labelling for fluorescence microscopy. Biosens Bioelectron 2023; 230:115256. [PMID: 36989663 DOI: 10.1016/j.bios.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.
Collapse
|
2
|
Sato Y, Nakao M, Kimura H. Live-Cell Imaging Probes to Track Chromatin Modification Dynamics. Microscopy (Oxf) 2021; 70:415-422. [PMID: 34329472 PMCID: PMC8491620 DOI: 10.1093/jmicro/dfab030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The spatiotemporal organization of chromatin is regulated at different levels in the nucleus. Epigenetic modifications such as DNA methylation and histone modifications are involved in chromatin regulation and play fundamental roles in genome function. While the one-dimensional epigenomic landscape in many cell types has been revealed by chromatin immunoprecipitation and sequencing, the dynamic changes of chromatin modifications and their relevance to chromatin organization and genome function remain elusive. Live-cell probes to visualize chromatin and its modifications have become powerful tools to monitor dynamic chromatin regulation. Bulk chromatin can be visualized by both small fluorescent dyes and fluorescent proteins, and specific endogenous genomic loci have been detected by adapting genome-editing tools. To track chromatin modifications in living cells, various types of probes have been developed. Protein domains that bind weakly to specific modifications, such as chromodomains for histone methylation, can be repeated to create a tighter binding probe that can then be tagged with a fluorescent protein. It has also been demonstrated that antigen-binding fragments and single-chain variable fragments from modification-specific antibodies can serve as binding probes without disturbing cell division, development and differentiation. These modification-binding modules are used in modification sensors based on fluorescence/Förster resonance energy transfer to measure the intramolecular conformational changes triggered by modifications. Other probes can be created using a bivalent binding system, such as fluorescence complementation or luciferase chemiluminescence. Live-cell chromatin modification imaging using these probes will address dynamic chromatin regulation and will be useful for assaying and screening effective epigenome drugs in cells and organisms.
Collapse
Affiliation(s)
- Yuko Sato
- Cell Biology Center, Institute of Innovative Research, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Masaru Nakao
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
3
|
Tsubono Y, Kawamoto Y, Hidaka T, Pandian GN, Hashiya K, Bando T, Sugiyama H. A Near-Infrared Fluorogenic Pyrrole-Imidazole Polyamide Probe for Live-Cell Imaging of Telomeres. J Am Chem Soc 2020; 142:17356-17363. [PMID: 32955878 PMCID: PMC7683039 DOI: 10.1021/jacs.0c04955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Telomeres are closely associated with cellular senescence and cancer. Although some techniques have been developed to label telomeres in living cells for study of telomere dynamics, few biocompatible near-infrared probes based on synthetic molecules have been reported. In this study, we developed a near-infrared fluorogenic pyrrole-imidazole polyamide probe (SiR-TTet59B) to visualize telomeres by conjugating a silicon-rhodamine (SiR) fluorophore with a tandem tetramer pyrrole-imidazole polyamide targeting 24 bp in the telomeric double-stranded (ds) DNA. SiR-TTet59B was almost nonfluorescent in water but increased its fluorescence dramatically on binding to telomeric dsDNA. Using a peptide-based delivery reagent, we demonstrated the specific and effective visualization of telomeres in living U2OS cells. Moreover, SiR-TTet59B could be used to observe the dynamic movements of telomeres during interphase and mitosis. This simple imaging method using a synthetic near-infrared probe could be a powerful tool for studies of telomeres and for diagnosis.
Collapse
Affiliation(s)
- Yutaro Tsubono
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 6060-8501, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 6060-8501, Japan
| |
Collapse
|
4
|
Nozeret K, Loll F, Cardoso GM, Escudé C, Boutorine AS. Interaction of fluorescently labeled pyrrole-imidazole polyamide probes with fixed and living murine and human cells. Biochimie 2018; 149:122-134. [DOI: 10.1016/j.biochi.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/14/2018] [Indexed: 12/26/2022]
|
5
|
Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 2018; 14:1051-1086. [PMID: 29977379 PMCID: PMC6009268 DOI: 10.3762/bjoc.14.93] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA–protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.
Collapse
Affiliation(s)
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 122003, India
| | - Dev P Arya
- NUBAD, LLC, 900B West Faris Rd., Greenville 29605, SC, USA.,Clemson University, Hunter Laboratory, Clemson 29634, SC, USA
| |
Collapse
|
6
|
Kawamoto Y, Bando T, Sugiyama H. Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem 2018; 26:1393-1411. [PMID: 29439914 DOI: 10.1016/j.bmc.2018.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Abstract
Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
7
|
Comparative Study of Novel Fluorescent Cyanine Nucleotides: Hybridization Analysis of Labeled PCR Products Using a Biochip. J Fluoresc 2017; 27:2001-2016. [PMID: 28752470 DOI: 10.1007/s10895-017-2139-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 07/18/2017] [Indexed: 01/08/2023]
Abstract
This study investigated the synthesis and substrate properties of Cy5-labeled dUTP derivatives with different substituents, linkers between the dye unit and pyrimidine heterocycle and fluorophore charges. Fluorescently labeled nucleoside triphosphates were studied as substrates using multiplex PCR with Taq and Vent (exo-) DNA polymerases, the typical representatives of the A and B polymerase families. The efficiency of nucleotide incorporation during PCR was assessed with a multi-parameter hybridization analysis using a diagnostic DNA microarray. The hybridization analysis indirectly estimates the incorporation efficiency of dye-labeled nucleotides in multiplex PCR. Our results demonstrated higher efficiencies of substrates with electrically neutral dyes than electropositive and electronegative Cy5 residues.
Collapse
|
8
|
Kawamoto Y, Sasaki A, Chandran A, Hashiya K, Ide S, Bando T, Maeshima K, Sugiyama H. Targeting 24 bp within Telomere Repeat Sequences with Tandem Tetramer Pyrrole–Imidazole Polyamide Probes. J Am Chem Soc 2016; 138:14100-14107. [DOI: 10.1021/jacs.6b09023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yusuke Kawamoto
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Asuka Sasaki
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Anandhakumar Chandran
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Satoru Ide
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Toshikazu Bando
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazuhiro Maeshima
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material
Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Vasilyeva SV, Filichev VV, Boutorine AS. Application of Cu(I)-catalyzed azide-alkyne cycloaddition for the design and synthesis of sequence specific probes targeting double-stranded DNA. Beilstein J Org Chem 2016; 12:1348-60. [PMID: 27559384 PMCID: PMC4979877 DOI: 10.3762/bjoc.12.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 12/27/2022] Open
Abstract
Efficient protocols based on Cu(I)-catalyzed azide-alkyne cycloaddition were developed for the synthesis of conjugates of pyrrole-imidazole polyamide minor groove binders (MGB) with fluorophores and with triplex-forming oligonucleotides (TFOs). Diverse bifunctional linkers were synthesized and used for the insertion of terminal azides or alkynes into TFOs and MGBs. The formation of stable triple helices by TFO-MGB conjugates was evaluated by gel-shift experiments. The presence of MGB in these conjugates did not affect the binding parameters (affinity and triplex stability) of the parent TFOs.
Collapse
Affiliation(s)
- Svetlana V Vasilyeva
- Institute of Chemical Biology & Fundamental Medicine, SB of RAS, pr. Lavrent’eva 8, 630090 Novosibirsk, Russia
| | - Vyacheslav V Filichev
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand
| | - Alexandre S Boutorine
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France
| |
Collapse
|
10
|
Rombouts K, Braeckmans K, Remaut K. Fluorescent Labeling of Plasmid DNA and mRNA: Gains and Losses of Current Labeling Strategies. Bioconjug Chem 2015; 27:280-97. [PMID: 26670733 DOI: 10.1021/acs.bioconjchem.5b00579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Live-cell imaging has provided the life sciences with insights into the cell biology and dynamics. Fluorescent labeling of target molecules proves to be indispensable in this regard. In this Review, we focus on the current fluorescent labeling strategies for nucleic acids, and in particular mRNA (mRNA) and plasmid DNA (pDNA), which are of interest to a broad range of scientific fields. By giving a background of the available techniques and an evaluation of the pros and cons, we try to supply scientists with all the information needed to come to an informed choice of nucleic acid labeling strategy aimed at their particular needs.
Collapse
Affiliation(s)
- K Rombouts
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Braeckmans
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Remaut
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| |
Collapse
|
11
|
Nozeret K, Bonan M, Yarmoluk SM, Novopashina DS, Boutorine AS. Synthesis of mouse centromere-targeted polyamides and physico-chemical studies of their interaction with the target double-stranded DNA. Bioorg Med Chem 2015; 23:5932-45. [PMID: 26190459 DOI: 10.1016/j.bmc.2015.06.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 11/18/2022]
Abstract
Synthetic minor groove-binding pyrrole-imidazole polyamides labeled by fluorophores are promising candidates for fluorescence imaging of double-stranded DNA in isolated chromosomes or fixed and living cells. We synthesized nine hairpin and two head-to-head tandem polyamides targeting repeated sequences from mouse major satellites. Their interaction with synthetic target dsDNA has been studied by physico-chemical methods in vitro before and after coupling to various fluorophores. Great variability in affinities and fluorescence properties reveals a conclusion that these properties do not only rely on recognition rules, but also on other known and unknown structural factors. Individual testing of each probe is needed before cellular applications.
Collapse
Affiliation(s)
- Karine Nozeret
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France.
| | - Marc Bonan
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France; Université Paris René Descartes, 12 Rue de l'École de Médecine, 75006 Paris, France.
| | - Serguiy M Yarmoluk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, ul. Zabolotnogo, 150, P.O. 88, 03187 Kiev, Ukraine.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentyev prosp., 8, 630090 Novosibirsk, Russia.
| | - Alexandre S Boutorine
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France.
| |
Collapse
|