1
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
2
|
Jumeaux C, Spicer CD, Charchar P, Howes PD, Holme MN, Ma L, Rose NC, Nabarro J, Fascione MA, Rashid MH, Yarovsky I, Stevens MM. Strain-Promoted Cycloadditions in Lipid Bilayers Triggered by Liposome Fusion. Angew Chem Int Ed Engl 2024; 63:e202314786. [PMID: 38438780 DOI: 10.1002/anie.202314786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 03/06/2024]
Abstract
Due to the variety of roles served by the cell membrane, its composition and structure are complex, making it difficult to study. Bioorthogonal reactions, such as the strain promoted azide-alkyne cycloaddition (SPAAC), are powerful tools for exploring the function of biomolecules in their native environment but have been largely unexplored within the context of lipid bilayers. Here, we developed a new approach to study the SPAAC reaction in liposomal membranes using azide- and strained alkyne-functionalized Förster resonance energy transfer (FRET) dye pairs. This study represents the first characterization of the SPAAC reaction between diffusing molecules inside liposomal membranes. Potential applications of this work include in situ bioorthogonal labeling of membrane proteins, improved understanding of membrane dynamics and fluidity, and the generation of new probes for biosensing assays.
Collapse
Affiliation(s)
- Coline Jumeaux
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Christopher D Spicer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, YO10 5DD, United Kingdom
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Philip D Howes
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Present Addresses: Department of Engineering and Design, School of Engineering and Informatics, University of Sussex, BN1 9RH, Brighton, United Kingdom
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Li Ma
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Nicholas C Rose
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, YO10 5DD, United Kingdom
| | - Joe Nabarro
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, YO10 5DD, United Kingdom
| | - Martin A Fascione
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, YO10 5DD, United Kingdom
| | - M Harunur Rashid
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
- Present Addresses: Department of Mathematics and Physics, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| |
Collapse
|
3
|
Bautista L, Pill-Pepe L, Kapoor N, Snyder S, Chu E, Agarwal P, Sardar M, Arulkumar S, Berges A, Iverson M, Behrens C, Marcq O, Fairman J. Addition of Lauryldimethylamine N-Oxide (LDAO) to a Copper-Free Click Chemistry Reaction Improves the Conjugation Efficiency of a Cell-Free Generated CRM197 Variant to Clinically Important Streptococcus pneumoniae Serotypes. ACS OMEGA 2022; 7:34921-34928. [PMID: 36211053 PMCID: PMC9535640 DOI: 10.1021/acsomega.2c03481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/07/2022] [Indexed: 05/22/2023]
Abstract
Strain-promoted azide-alkyne cycloaddition (SPAAC) reactions like click chemistry have the potential to be highly scalable, robust, and cost-effective methods for generating small- and large-molecule conjugates for a variety of applications. However, despite method improvements, the rates of copper-based click chemistry reactions continue to be much faster than the rates of copper-free click chemistry reactions, which makes broader deployment of click chemistry challenging from a safety and compatibility standpoint. In this study, we used a zwitterionic detergent, namely, lauryldimethylamine N-oxide (LDAO), in a copper-free click chemistry reaction to investigate its impact on the generation of conjugate vaccines (CVs). For this, we utilized an Xpress cell-free protein synthesis (CFPS) platform to generate a proprietary variant of CRM197 (eCRM) containing non-native amino acids (nnAA) with azide-containing side chains as a carrier protein for conjugation to several clinically relevant dibenzocyclooctyne (DBCO)-derivatized S. pneumoniae serotypes (types 3, 5, 18C, and 19A). For conjugation, we performed copper-free click chemistry in the presence and absence of LDAO. Our results show that the addition of LDAO significantly enhanced the reaction kinetics to generate larger conjugates, which were similarly immunogenic and equally stable to conjugates generated without LDAO. Most importantly, the addition of LDAO substantially improved the efficiency of the conjugation process. Thus, our results for the first time show that the addition of a zwitterionic surfactant to a copper-free click chemistry reaction can significantly accelerate the reaction kinetics along with improving the efficiency of the conjugation process.
Collapse
|
4
|
Bednar RM, Jana S, Kuppa S, Franklin R, Beckman J, Antony E, Cooley RB, Mehl RA. Genetic Incorporation of Two Mutually Orthogonal Bioorthogonal Amino Acids That Enable Efficient Protein Dual-Labeling in Cells. ACS Chem Biol 2021; 16:2612-2622. [PMID: 34590824 DOI: 10.1021/acschembio.1c00649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to site-specifically modify proteins at multiple sites in vivo will enable the study of protein function in its native environment with unprecedented levels of detail. Here, we present a versatile two-step strategy to meet this goal involving site-specific encoding of two distinct noncanonical amino acids bearing bioorthogonal handles into proteins in vivo followed by mutually orthogonal labeling. This general approach, that we call dual encoding and labeling (DEAL), allowed us to efficiently encode tetrazine- and azide-bearing amino acids into a protein and demonstrate for the first time that the bioorthogonal labeling reactions with strained alkene and alkyne labels can function simultaneously and intracellularly with high yields when site-specifically encoded in a single protein. Using our DEAL system, we were able to perform topologically defined protein-protein cross-linking, intramolecular stapling, and site-specific installation of fluorophores all inside living Escherichia coli cells, as well as study the DNA-binding properties of yeast Replication Protein A in vitro. By enabling the efficient dual modification of proteins in vivo, this DEAL approach provides a tool for the characterization and engineering of proteins in vivo.
Collapse
Affiliation(s)
- Riley M. Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Rachel Franklin
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Joseph Beckman
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Richard B. Cooley
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| |
Collapse
|
5
|
Yang Z, Xu H, Wang J, Chen W, Zhao M. Single-Molecule Fluorescence Techniques for Membrane Protein Dynamics Analysis. APPLIED SPECTROSCOPY 2021; 75:491-505. [PMID: 33825543 DOI: 10.1177/00037028211009973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorescence-based single-molecule techniques, mainly including fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence resonance energy transfer (smFRET), are able to analyze the conformational dynamics and diversity of biological macromolecules. They have been applied to analysis of the dynamics of membrane proteins, such as membrane receptors and membrane transport proteins, due to their superior ability in resolving spatio-temporal heterogeneity and the demand of trace amounts of analytes. In this review, we first introduced the basic principle involved in FCS and smFRET. Then we summarized the labeling and immobilization strategies of membrane protein molecules, the confocal-based and TIRF-based instrumental configuration, and the data processing methods. The applications to membrane protein dynamics analysis are described in detail with the focus on how to select suitable fluorophores, labeling sites, experimental setup, and analysis methods. In the last part, the remaining challenges to be addressed and further development in this field are also briefly discussed.
Collapse
Affiliation(s)
- Ziyu Yang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Haiqi Xu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| |
Collapse
|
6
|
Swiecicki JM, Santana JT, Imperiali B. A Strategic Approach for Fluorescence Imaging of Membrane Proteins in a Native-like Environment. Cell Chem Biol 2019; 27:245-251.e3. [PMID: 31831268 DOI: 10.1016/j.chembiol.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/22/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Biological membranes are complex barriers in which membrane proteins and thousands of lipidic species participate in structural and functional interactions. Developing a strategic approach that allows uniform labeling of membrane proteins while maintaining a lipidic environment that retains functional interactions is highly desirable for in vitro fluorescence studies. Herein, we focus on complementing current methods by integrating the powerful processes of unnatural amino acid mutagenesis, bioorthogonal labeling, and the detergent-free membrane protein solubilization based on the amphiphilic styrene-maleic acid (SMA) polymer. Importantly, the SMA polymer preserves a thermodynamically stable shell of phospholipids. The approach that we present is both rapid and generalizable providing a population of uniquely labeled membrane proteins in lipid nanoparticles for quantitative fluorescence-based studies.
Collapse
Affiliation(s)
- Jean-Marie Swiecicki
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jordan Tyler Santana
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Nödling AR, Spear LA, Williams TL, Luk LYP, Tsai YH. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays Biochem 2019; 63:237-266. [PMID: 31092687 PMCID: PMC6610526 DOI: 10.1042/ebc20180042] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in health. In recent years, a series of methods has been developed to modulate protein function through genetically incorporated unnatural amino acids. In this review, we will first discuss the basic concept of genetic code expansion and give an up-to-date list of amino acids that can be incorporated into proteins in mammalian cells. We then focus on the use of unnatural amino acids to activate, inhibit, or reversibly modulate protein function by translational, optical or chemical control. The features of each approach will also be highlighted.
Collapse
Affiliation(s)
| | - Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
8
|
Krause BS, Kaufmann JCD, Kuhne J, Vierock J, Huber T, Sakmar TP, Gerwert K, Bartl FJ, Hegemann P. Tracking Pore Hydration in Channelrhodopsin by Site-Directed Infrared-Active Azido Probes. Biochemistry 2019; 58:1275-1286. [DOI: 10.1021/acs.biochem.8b01211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Benjamin S. Krause
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Joel C. D. Kaufmann
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Kuhne
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Johannes Vierock
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Thomas Huber
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Alfred Nobels Allé 23, 141 57 Huddinge, Sweden
| | - Klaus Gerwert
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Franz J. Bartl
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
9
|
Steflova J, Storch G, Wiesner S, Stockinger S, Berg R, Trapp O. Investigation of Strain-Promoted Azide–Alkyne Cycloadditions in Aqueous Solutions by Capillary Electrophoresis. J Org Chem 2018; 83:604-613. [DOI: 10.1021/acs.joc.7b02092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jana Steflova
- Department
Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse
5−13, 81377 München, Germany
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Golo Storch
- Department
Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse
5−13, 81377 München, Germany
| | - Sarah Wiesner
- Department
Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse
5−13, 81377 München, Germany
| | - Skrollan Stockinger
- Department
Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse
5−13, 81377 München, Germany
| | - Regina Berg
- Department
Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse
5−13, 81377 München, Germany
| | - Oliver Trapp
- Department
Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse
5−13, 81377 München, Germany
| |
Collapse
|
10
|
Tian H, Sakmar TP, Huber T. The Energetics of Chromophore Binding in the Visual Photoreceptor Rhodopsin. Biophys J 2017; 113:60-72. [PMID: 28700926 DOI: 10.1016/j.bpj.2017.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 01/06/2023] Open
Abstract
The visual photoreceptor rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that stabilizes its inverse agonist ligand, 11-cis-retinal (11CR), by a covalent, protonated Schiff base linkage. In the visual dark adaptation, the fundamental molecular event after photobleaching of rhodopsin is the recombination reaction between its apoprotein opsin and 11CR. Here we present a detailed analysis of the kinetics and thermodynamics of this reaction, also known as the "regeneration reaction". We compared the regeneration of purified rhodopsin reconstituted into phospholipid/detergent bicelles with rhodopsin reconstituted into detergent micelles. We found that the lipid bilayer of bicelles stabilized the chromophore-free opsin over the long timescale required for the regeneration experiments, and also facilitated the ligand reuptake binding reaction. We utilized genetic code expansion and site-specific bioorthogonal labeling of rhodopsin with Alexa488 to enable, to our knowledge, a novel fluorescence resonance energy transfer-based measurement of the binding kinetics between opsin and 11CR. Based on these results, we report a complete energy diagram for the regeneration reaction of rhodopsin. We show that the dissociation reaction of rhodopsin to 11CR and opsin has a 25-pM equilibrium dissociation constant, which corresponds to only 0.3 kcal/mol stabilization compared to the noncovalent, tightly bound antagonist-GPCR complex of iodopindolol and β-adrenergic receptor. However, 11CR dissociates four orders-of-magnitude slower than iodopindolol, which corresponds to a 6-kcal/mol higher dissociation free energy barrier. We further used isothermal titration calorimetry to show that ligand binding in rhodopsin is enthalpy driven with -22 kcal/mol, which is 12 kcal/mol more stable than the antagonist-GPCR complex. Our data provide insights into the ligand-receptor binding reaction for rhodopsin in particular, and for GPCRs more broadly.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York.
| |
Collapse
|
11
|
Tian H, Sakmar TP, Huber T. A simple method for enhancing the bioorthogonality of cyclooctyne reagent. Chem Commun (Camb) 2016; 52:5451-4. [PMID: 27009873 DOI: 10.1039/c6cc01321j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cross-reactivity between some cyclooctynes and thiols limits the bioorthogonality of the strain-promoted azide-alkyne cycloaddition reaction. We show that a low concentration of β-mercaptoethanol significantly reduces the undesirable side reaction between bicyclononyne (BCN) and cysteine and while preserving free cysteines. We site-specifically label a genetically-encoded azido group in the visual photoreceptor rhodopsin to demonstrate the utility of the strategy.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA. and Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| |
Collapse
|
12
|
Peng T, Hang HC. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells. J Am Chem Soc 2016; 138:14423-14433. [PMID: 27768298 DOI: 10.1021/jacs.6b08733] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.
Collapse
Affiliation(s)
- Tao Peng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University , New York, New York 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University , New York, New York 10065, United States
| |
Collapse
|
13
|
Davis DL, Price EK, Aderibigbe SO, Larkin MXH, Barlow ED, Chen R, Ford LC, Gray ZT, Gren SH, Jin Y, Keddington KS, Kent AD, Kim D, Lewis A, Marrouche RS, O'Dair MK, Powell DR, Scadden MHC, Session CB, Tao J, Trieu J, Whiteford KN, Yuan Z, Yun G, Zhu J, Heemstra JM. Effect of Buffer Conditions and Organic Cosolvents on the Rate of Strain-Promoted Azide-Alkyne Cycloaddition. J Org Chem 2016; 81:6816-9. [PMID: 27387821 DOI: 10.1021/acs.joc.6b01112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the effect of buffer identity, ionic strength, pH, and organic cosolvents on the rate of strain-promoted azide-alkyne cycloaddition with the widely used DIBAC cyclooctyne. The rate of reaction between DIBAC and a hydrophilic azide is highly tolerant to changes in buffer conditions but is impacted by organic cosolvents. Thus, bioconjugation reactions using DIBAC can be carried out in the buffer that is most compatible with the biomolecules being labeled, but the use of organic cosolvents should be carefully considered.
Collapse
Affiliation(s)
- Derek L Davis
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Erin K Price
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Sabrina O Aderibigbe
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Maureen X-H Larkin
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Emmett D Barlow
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Renjie Chen
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Lincoln C Ford
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Zackery T Gray
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Stephen H Gren
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Yuwei Jin
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Keith S Keddington
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Alexandra D Kent
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Dasom Kim
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Ashley Lewis
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Rami S Marrouche
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Mark K O'Dair
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Daniel R Powell
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Mick'l H C Scadden
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Curtis B Session
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Jifei Tao
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Janelle Trieu
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Kristen N Whiteford
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Zheng Yuan
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Goyeun Yun
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Judy Zhu
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Jennifer M Heemstra
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
15
|
Anderton GI, Bangerter AS, Davis TC, Feng Z, Furtak AJ, Larsen JO, Scroggin TL, Heemstra JM. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis. Bioconjug Chem 2015; 26:1687-91. [PMID: 26056848 DOI: 10.1021/acs.bioconjchem.5b00274] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bioorthogonal conjugation reactions such as strain-promoted azide-alkyne cycloaddition (SPAAC) have become increasingly popular in recent years, as they enable site-specific labeling of complex biomolecules. However, despite a number of improvements to cyclooctyne design, reaction rates for SPAAC remain significantly lower than those of the related copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Here we explore micellar catalysis as a means to increase reaction rate between a cyclooctyne and hydrophobic azide. We find that anionic and cationic surfactants provide the most efficient catalysis, with rate enhancements of up to 179-fold for reaction of benzyl azide with DIBAC cyclooctyne. Additionally, we find that the presence of surfactant can provide up to 51-fold selectivity for reaction with a hydrophobic over hydrophilic azide. A more modest, but still substantial, 11-fold rate enhancement is observed for micellar catalysis of the reaction between benzyl azide and a DIBAC-functionalized DNA sequence, demonstrating that micellar catalysis can be successfully applied to hydrophilic biomolecules. Together, these results demonstrate that micellar catalysis can provide higher conjugation yields in reduced time when using hydrophobic SPAAC reagents.
Collapse
Affiliation(s)
- Grant I Anderton
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Alyssa S Bangerter
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Tyson C Davis
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhiyuan Feng
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Aric J Furtak
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jared O Larsen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Triniti L Scroggin
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jennifer M Heemstra
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|