1
|
Tsuji K, Tamamura H, Burke TR. Application of a Fluorescence Recovery-Based Polo-Like Kinase 1 Binding Assay to Polo-Like Kinase 2 and Polo-Like Kinase 3. Biol Pharm Bull 2024; 47:1282-1287. [PMID: 38987177 DOI: 10.1248/bpb.b24-00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Assay systems for evaluating compound protein-binding affinities are essential for developing agonists and/or antagonists. Targeting individual members of a protein family can be extremely important and for this reason it is critical to have methods for evaluating selectivity. We have previously reported a fluorescence recovery assay that employs a fluorescein-labelled probe to determine IC50 values of ATP-competitive type 1 inhibitors of polo-like kinase 1 (Plk1). This probe is based on the potent Plk1 inhibitor BI2536 [fluorescein isothiocyanate (FITC)-polyethylene glycol (PEG)-lysine (Lys) (BI2536) 1]. Herein, we extend this approach to the highly homologous Plk2 and Plk3 members of this kinase family. Our results suggest that this assay system is suitable for evaluating binding affinities against Plk2 and Plk3 as well as Plk1. The new methodology represents the first example of evaluating N-terminal catalytic kinase domain (KD) affinities of Plk2 and Plk3. It represents a simple and cost-effective alternative to traditional kinase assays to explore the KD-binding compounds against Plk2 and Plk3 as well as Plk1.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| |
Collapse
|
2
|
Zha J, He J, Wu C, Zhang M, Liu X, Zhang J. Designing drugs and chemical probes with the dualsteric approach. Chem Soc Rev 2023; 52:8651-8677. [PMID: 37990599 DOI: 10.1039/d3cs00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Traditionally, drugs are monovalent, targeting only one site on the protein surface. This includes orthosteric and allosteric drugs, which bind the protein at orthosteric and allosteric sites, respectively. Orthosteric drugs are good in potency, whereas allosteric drugs have better selectivity and are solutions to classically undruggable targets. However, it would be difficult to simultaneously reach high potency and selectivity when targeting only one site. Also, both kinds of monovalent drugs suffer from mutation-caused drug resistance. To overcome these obstacles, dualsteric modulators have been proposed in the past twenty years. Compared to orthosteric or allosteric drugs, dualsteric modulators are bivalent (or bitopic) with two pharmacophores. Each of the two pharmacophores bind the protein at the orthosteric and an allosteric site, which could bring the modulator with special properties beyond monovalent drugs. In this study, we comprehensively review the current development of dualsteric modulators. Our main effort reason and illustrate the aims to apply the dualsteric approach, including a "double win" of potency and selectivity, overcoming mutation-caused drug resistance, developments of function-biased modulators, and design of partial agonists. Moreover, the strengths of the dualsteric technique also led to its application outside pharmacy, including the design of highly sensitive fluorescent tracers and usage as molecular rulers. Besides, we also introduced drug targets, designing strategies, and validation methods of dualsteric modulators. Finally, we detail the conclusions and perspectives.
Collapse
Affiliation(s)
- Jinyin Zha
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Jin H, Kim J, Lee O, Kim H, No KT. Leveraging the Fragment Molecular Orbital Method to Explore the PLK1 Kinase Binding Site and Polo-Box Domain for Potent Small-Molecule Drug Design. Int J Mol Sci 2023; 24:15639. [PMID: 37958623 PMCID: PMC10650754 DOI: 10.3390/ijms242115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) plays a pivotal role in cell division regulation and emerges as a promising therapeutic target for cancer treatment. Consequently, the development of small-molecule inhibitors targeting PLK1 has become a focal point in contemporary research. The adenosine triphosphate (ATP)-binding site and the polo-box domain in PLK1 present crucial interaction sites for these inhibitors, aiming to disrupt the protein's function. However, designing potent and selective small-molecule inhibitors can be challenging, requiring a deep understanding of protein-ligand interaction mechanisms at these binding sites. In this context, our study leverages the fragment molecular orbital (FMO) method to explore these site-specific interactions in depth. Using the FMO approach, we used the FMO method to elucidate the molecular mechanisms of small-molecule drugs binding to these sites to design PLK1 inhibitors that are both potent and selective. Our investigation further entailed a comparative analysis of various PLK1 inhibitors, each characterized by distinct structural attributes, helping us gain a better understanding of the relationship between molecular structure and biological activity. The FMO method was particularly effective in identifying key binding features and predicting binding modes for small-molecule ligands. Our research also highlighted specific "hot spot" residues that played a critical role in the selective and robust binding of PLK1. These findings provide valuable insights that can be used to design new and effective PLK1 inhibitors, which can have significant implications for developing anticancer therapeutics.
Collapse
Affiliation(s)
- Haiyan Jin
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
| | - Jongwan Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
| | - Onju Lee
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
| | - Hyein Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| |
Collapse
|
4
|
Stafford JM, Wyatt MD, McInnes C. Inhibitors of the PLK1 polo-box domain: drug design strategies and therapeutic opportunities in cancer. Expert Opin Drug Discov 2023; 18:65-81. [PMID: 36524399 DOI: 10.1080/17460441.2023.2159942] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Polo Like Kinase 1 (PLK1) is a key regulator of mitosis and its overexpression is frequently observed in a wide variety of human cancers, while often being associated with poor survival rates. Therefore, it is considered a potential and attractive target for cancer therapeutic development. The Polo like kinase family is characterized by the presence of a unique C terminal polobox domain (PBD) involved in regulating kinase activity and subcellular localization. Among the two functionally essential, druggable sites with distinct properties that PLK1 offers, targeting the PBD presents an alternative approach for therapeutic development. AREAS COVERED Significant progress has been made in progressing from the peptidic PBD inhibitors first identified, to peptidomimetic and recently drug-like small molecules. In this review, the rationale for targeting the PBD over the ATP binding site is discussed, along with recent progress, challenges, and outlook. EXPERT OPINION The PBD has emerged as a viable alternative target for the inhibition of PLK1, and progress has been made in using compounds to elucidate mechanistic aspects of activity regulation and in determining roles of the PBD. Studies have resulted in proof of concept of in vivo efficacy suggesting promise for PBD binders in clinical development.
Collapse
Affiliation(s)
- Jessy M Stafford
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
5
|
Tsuji K, Hymel D, Ma B, Tamamura H, Nussinov R, Burke TR. Development of ultra-high affinity bivalent ligands targeting the polo-like kinase 1. RSC Chem Biol 2022; 3:1111-1120. [PMID: 36128509 PMCID: PMC9428768 DOI: 10.1039/d2cb00153e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
The polo-like kinase 1 (Plk1) is an important mediator of cell cycle regulation and a recognized anti-cancer molecular target. In addition to its catalytic kinase domain (KD), Plk1 contains a polo-box domain (PBD), which engages in protein–protein interactions (PPIs) essential to proper Plk1 function. We have developed a number of extremely high-affinity PBD-binding peptide inhibitors. However, we have reached an apparent limit to increasing the affinities of these monovalent ligands. Accordingly, we undertook an extensive investigation of bivalent ligands, designed to engage both KD and PBD regions of Plk1. This has resulted in bivalent constructs exhibiting more than 100-fold Plk1 affinity enhancement relative to the best monovalent PBD-binding ligands. Startlingly, and in contradiction to widely accepted notions of KD–PBD interactions, we have found that full affinities can be retained even with minimal linkers between KD and PBD-binding components. In addition to significantly advancing the development of PBD-binding ligands, our findings may cause a rethinking of the structure – function of Plk1. The polo-like kinase 1 (Plk1) is an important mediator of cell cycle regulation and a recognized anti-cancer molecular target.![]()
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Buyong Ma
- Computational Structural Biology Section, Laboratory of Immunometabolism, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Laboratory of Immunometabolism, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
6
|
Laurin CMC, Bluck JP, Chan AKN, Keller M, Boczek A, Scorah AR, See KFL, Jennings LE, Hewings DS, Woodhouse F, Reynolds JK, Schiedel M, Humphreys PG, Biggin PC, Conway SJ. Fragment-Based Identification of Ligands for Bromodomain-Containing Factor 3 of Trypanosoma cruzi. ACS Infect Dis 2021; 7:2238-2249. [PMID: 33203208 DOI: 10.1021/acsinfecdis.0c00618] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Trypanosoma cruzi (T. cruzi) parasite is the cause of Chagas disease, a neglected disease endemic in South America. The life cycle of the T. cruzi parasite is complex and includes transitions between distinct life stages. This change in phenotype (without a change in genotype) could be controlled by epigenetic regulation, and might involve the bromodomain-containing factors 1-5 (TcBDF1-5). However, little is known about the function of the TcBDF1-5. Here we describe a fragment-based approach to identify ligands for T. cruzi bromodomain-containing factor 3 (TcBDF3). We expressed a soluble construct of TcBDF3 in E. coli, and used this to develop a range of biophysical assays for this protein. Fragment screening identified 12 compounds that bind to the TcBDF3 bromodomain. On the basis of this screen, we developed functional ligands containing a fluorescence or 19F reporter group, and a photo-crosslinking probe for TcBDF3. These tool compounds will be invaluable in future studies on the function of TcBDF3 and will provide insight into the biology of T. cruzi.
Collapse
Affiliation(s)
- Corentine M. C. Laurin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Joseph P. Bluck
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Department of Biochemistry, University of Oxford, 3 Parks Road, Oxford OX1 3QU, UK
| | - Anthony K. N. Chan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Michelle Keller
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Andrew Boczek
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Amy R. Scorah
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - K. F. Larissa See
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Laura E. Jennings
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - David S. Hewings
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Fern Woodhouse
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Jessica K. Reynolds
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthias Schiedel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, 3 Parks Road, Oxford OX1 3QU, UK
| | - Stuart J. Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
7
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
8
|
Alverez CN, Park JE, Toti KS, Xia Y, Krausz KW, Rai G, Bang JK, Gonzalez FJ, Jacobson KA, Lee KS. Identification of a New Heterocyclic Scaffold for Inhibitors of the Polo-Box Domain of Polo-like Kinase 1. J Med Chem 2020; 63:14087-14117. [PMID: 33175530 PMCID: PMC7769008 DOI: 10.1021/acs.jmedchem.0c01669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a mitotic-specific target widely deregulated in various human cancers, polo-like kinase 1 (Plk1) has been extensively explored for anticancer activity and drug discovery. Although multiple catalytic domain inhibitors were tested in preclinical and clinical studies, their efficacies are limited by dose-limiting cytotoxicity, mainly from off-target cross reactivity. The C-terminal noncatalytic polo-box domain (PBD) of Plk1 has emerged as an attractive target for generating new protein-protein interaction inhibitors. Here, we identified a 1-thioxo-2,4-dihydro-[1,2,4]triazolo[4,3-a]quinazolin-5(1H)-one scaffold that efficiently inhibits Plk1 PBD but not its related Plk2 and Plk3 PBDs. Structure-activity relationship studies led to multiple inhibitors having ≥10-fold higher inhibitory activity than the previously characterized Plk1 PBD-specific phosphopeptide, PLHSpT (Kd ∼ 450 nM). In addition, S-methyl prodrugs effectively inhibited mitotic progression and cell proliferation and their metabolic stability was determined. These data describe a novel class of small-molecule inhibitors that offer a promising avenue for future drug discovery against Plk1-addicted cancers.
Collapse
Affiliation(s)
- Celeste N Alverez
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Jung-Eun Park
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yangliu Xia
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kristopher W Krausz
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Jeong K Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Frank J Gonzalez
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung S Lee
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
9
|
Zhao Y, Wang X. PLK4: a promising target for cancer therapy. J Cancer Res Clin Oncol 2019; 145:2413-2422. [PMID: 31492983 DOI: 10.1007/s00432-019-02994-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase that regulates centriole duplication. PLK4 deregulation causes centrosome number abnormalities, mitotic defects, chromosomal instability and, consequently, tumorigenesis. Therefore, PLK4 has emerged as a therapeutic target for the treatment of multiple cancers. In this review, we summarize the critical role of centrosome amplification and PLK4 in cancer. We also highlight recent advances in the development of PLK4 inhibitors and discuss potential combination therapies for cancer. METHODS The relevant literature from PubMed is reviewed in this article. The ClinicalTrials.gov database was searched for clinical trials related to the specific topic. RESULTS PLK4 is aberrantly expressed in multiple cancers and has prognostic value. Targeting PLK4 with inhibitors suppresses tumor growth in vitro and in vivo. CONCLUSIONS PLK4 plays an important role in centrosome amplification and tumor progression. PLK4 inhibitors used alone or in combination with other drugs have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for cancer. The results of relevant clinical trials await evaluation.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
10
|
Rubner S, Schubert S, Berg T. Poloxin-2HT+: changing the hydrophobic tag of Poloxin-2HT increases Plk1 degradation and apoptosis induction in tumor cells. Org Biomol Chem 2019; 17:3113-3117. [PMID: 30848278 DOI: 10.1039/c9ob00080a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the hydrophobically-tagged Plk1 PBD inhibitor Poloxin-2HT+, which selectively degrades the tumor target Plk1 and induces apoptosis in human tumor cells with higher potency than the hydrophobically-tagged inhibitor Poloxin-2HT. Our data provide further evidence that hydrophobically tagged inhibitors of protein-protein interactions can target and destroy disease-relevant proteins.
Collapse
Affiliation(s)
- Stefan Rubner
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
11
|
Goroshchuk O, Kolosenko I, Vidarsdottir L, Azimi A, Palm-Apergi C. Polo-like kinases and acute leukemia. Oncogene 2019; 38:1-16. [PMID: 30104712 DOI: 10.1038/s41388-018-0443-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Acute leukemia is a common malignancy among children and adults worldwide and many patients suffer from chronic health issues using current therapeutic approaches. Therefore, there is a great need for the development of novel and more specific therapies with fewer side effects. The family of Polo-like kinases (Plks) is a group of five serine/threonine kinases that play an important role in cell cycle regulation and are critical targets for therapeutic invention. Plk1 and Plk4 are novel targets for cancer therapy as leukemic cells often express higher levels than normal cells. In contrast, Plk2 and Plk3 are considered to be tumor suppressors. Several small molecule inhibitors have been developed for targeting Plk1 inhibition. Despite reaching phase III clinical trials, one of the ATP-competitive Plk1 inhibitor, volasertib, did not induce an objective clinical response and even caused lethal side effects in some patients. In order to improve the specificity of the Plk1 inhibitors and reduce off-target side effects, novel RNA interference (RNAi)-based therapies have been developed. In this review, we summarize the mechanisms of action of the Plk family members in acute leukemia, describe preclinical studies and clinical trials involving Plk-targeting drugs and discuss novel approaches in Plk targeting.
Collapse
Affiliation(s)
- Oksana Goroshchuk
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Alireza Azimi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Rubner S, Scharow A, Schubert S, Berg T. Selective Degradation of Polo-like Kinase 1 by a Hydrophobically Tagged Inhibitor of the Polo-Box Domain. Angew Chem Int Ed Engl 2018; 57:17043-17047. [PMID: 30351497 DOI: 10.1002/anie.201809640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Hydrophobic tagging (HT) of bioactive compounds can induce target degradation via the proteasomal pathway. The first application of hydrophobic tagging to an existing inhibitor of protein-protein interactions is now presented. We developed Poloxin-2HT by fusing an adamantyl tag to Poloxin-2, an inhibitor of the polo-box domain of the protein kinase Plk1, which is a target for tumor therapy. Poloxin-2HT selectively reduced the protein levels of Plk1 in HeLa cells and had a significantly stronger effect on cell viability and the induction of apoptosis than the untagged PBD inhibitor Poloxin-2. The change in cellular phenotype associated with the addition of the hydrophobic tag to Poloxin-2 demonstrated that Poloxin-2HT targets Plk1 in living cells. Our data validate hydrophobic tagging of selective inhibitors of protein-protein interactions as a novel strategy to target and destroy disease-relevant proteins.
Collapse
Affiliation(s)
- Stefan Rubner
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Andrej Scharow
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Sabine Schubert
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
13
|
Rubner S, Scharow A, Schubert S, Berg T. Selective Degradation of Polo‐like Kinase 1 by a Hydrophobically Tagged Inhibitor of the Polo‐Box Domain. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Stefan Rubner
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Andrej Scharow
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Sabine Schubert
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Thorsten Berg
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
14
|
Ran X, Gestwicki JE. Inhibitors of protein-protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Curr Opin Chem Biol 2018; 44:75-86. [PMID: 29908451 DOI: 10.1016/j.cbpa.2018.06.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions (PPI) were once considered 'undruggable', but clinical successes, driven by advanced methods in drug discovery, have challenged that notion. Here, we review the last three years of literature on PPI inhibitors to understand what is working and why. From the 66 recently reported PPI inhibitors, we found that the average molecular weight was significantly greater than 500Da, but that this trend was driven, in large part, by the contribution of peptide-based compounds. Despite differences in average molecular weight, we found that compounds based on small molecules or peptides were almost equally likely to be potent inhibitors (KD<1μM). Finally, we found PPIs with buried surface area (BSA) less than 2000Å2 were more likely to be inhibited by small molecules, while PPIs with larger BSA values were typically inhibited by peptides. PPIs with BSA values over 4000Å2 seemed to create a particular challenge, especially for orthosteric small molecules. Thus, it seems important to choose the inhibitor scaffold based on the properties of the target interaction. Moreover, this survey suggests a (more nuanced) conclusion to the question of whether PPIs are good drug targets; namely, that some PPIs are readily 'druggable' given the right choice of scaffold, while others still seem to deserve the 'undruggable' moniker.
Collapse
Affiliation(s)
- Xu Ran
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
15
|
Li Z, Liu J, Li J, Kong Y, Sandusky G, Rao X, Liu Y, Wan J, Liu X. Polo-like kinase 1 (Plk1) overexpression enhances ionizing radiation-induced cancer formation in mice. J Biol Chem 2017; 292:17461-17472. [PMID: 28900036 PMCID: PMC5655521 DOI: 10.1074/jbc.m117.810960] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
Polo-like kinase 1 (Plk1), a serine/threonine protein kinase normally expressed in mitosis, is frequently up-regulated in multiple types of human tumors regardless of the cell cycle stage. However, the causal relationship between Plk1 up-regulation and tumorigenesis is incompletely investigated. To this end, using a conditional expression system, here we generated Plk1 transgenic mouse lines to examine the role of Plk1 in tumorigenesis. Plk1 overexpression in mouse embryonic fibroblasts prepared from the transgenic mice led to aberrant mitosis followed by aneuploidy and apoptosis. Surprisingly, Plk1 overexpression had no apparent phenotypes in the mice. Given that no malignant tumor formation was observed even after a long period of Plk1 overexpression, we reasoned that additional factors are required for tumorigenesis in Plk1-overexpressing mice. Because Plk1 can directly participate in the regulation of the DNA damage response (DDR) pathway, we challenged Plk1-overexpressing mice with ionizing radiation (IR) and found that Plk1-overexpressing mice are much more sensitive to IR than their wild-type littermates. Analysis of tumor development in the Plk1-overexpressing mice indicated a marked decrease in the time required for tumor emergence after IR. At the molecular level, Plk1 overexpression led to reduced phosphorylation of the serine/threonine kinases ATM and Chk2 and of histone H2AX after IR treatment both in vivo and in vitro Furthermore, RNA-Seq analysis suggested that Plk1 elevation decreases the expression of several DDR genes. We conclude that Plk1 overexpression may contribute to tumor formation by both inducing chromosomal instability and suppressing the DDR pathway.
Collapse
MESH Headings
- Animals
- Ataxia Telangiectasia Mutated Proteins/genetics
- Ataxia Telangiectasia Mutated Proteins/metabolism
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Checkpoint Kinase 2/genetics
- Checkpoint Kinase 2/metabolism
- DNA Damage
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Enzymologic/radiation effects
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/radiation effects
- Mice
- Mice, Transgenic
- Neoplasms, Radiation-Induced/enzymology
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/pathology
- Phosphorylation/genetics
- Phosphorylation/radiation effects
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Radiation, Ionizing
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Zhiguo Li
- From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jinghui Liu
- From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jie Li
- From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Yifan Kong
- From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - George Sandusky
- the Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana 46202, and
| | - Xi Rao
- the Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yunlong Liu
- the Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jun Wan
- the Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoqi Liu
- From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907,
| |
Collapse
|
16
|
Chen X, Cui Y, Cheng X, Feng J, Wu Q, Zhu D. Highly Atom Economic Synthesis of d-2-Aminobutyric Acid through an In Vitro Tri-enzymatic Catalytic System. ChemistryOpen 2017; 6:534-540. [PMID: 28794949 PMCID: PMC5542762 DOI: 10.1002/open.201700093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 11/11/2022] Open
Abstract
d-2-Aminobutyric acid is an unnatural amino acid serving as an important intermediate in pharmaceutical production. Developing a synthetic method that uses cheaper starting materials and produces less by-product is a pressing demand. A tri-enzymatic catalytic system, which is composed of l-threonine ammonia lyase (l-TAL), d-amino acid dehydrogenase (d-AADH), and formate dehydrogenase (FDH), has thus been developed for the synthesis of d-2-aminobutyric acid with high optical purity. In this cascade reaction, the readily available l-threonine serves as the starting material, carbon dioxide and water are the by-products. d-2-Aminobutyric acid was obtained with >90 % yield and >99 % enantioselective excess, even without adding external ammonia, demonstrating that the ammonia from the first reaction can serve as the amino donor for the reductive amination step. This multi-enzymatic system provides an attractive method with high atomic economy for the synthesis of d-α-amino acids from the corresponding l-α-amino acids, which are readily produced by fermentation.
Collapse
Affiliation(s)
- Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Xinkuan Cheng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China.,University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China.,University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
17
|
Goldbach T, Knappe D, Reinsdorf C, Berg T, Hoffmann R. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates. J Pept Sci 2016; 22:592-9. [PMID: 27406684 DOI: 10.1002/psc.2905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/09/2022]
Abstract
Recent surveillance data on antimicrobial resistance predict the beginning of the post-antibiotic era with pan-resistant bacteria even overcoming polymyxin as the last available treatment option. Thus, new substances using novel modes of antimicrobial action are urgently needed to reduce this health threat. Antimicrobial peptides are part of the innate immune system of most vertebrates and invertebrates and accepted as valid substances for antibiotic drug development efforts. Especially, short proline-rich antimicrobial peptides (PrAMP) of insect origin have been optimized for activity against Gram-negative strains. They inhibit protein expression in bacteria by blocking the 70S ribosome exit tunnel (oncocin-type) or the assembly of the 50S subunit (apidaecin-type binding). Thus, apidaecin analog Api137 and oncocin analog Onc112 supposedly bind to different nearby or possibly partially overlapping binding sites. Here, we synthesized Api137/Onc112-conjugates bridged by ethylene glycol spacers of different length to probe synergistic activities and binding modes. Indeed, the antimicrobial activities against Escherichia coli and Pseudomonas aeruginosa improved for some constructs, although the conjugates did not bind better to the 70S ribosome of E. coli than Api137 and Onc112 using 5(6)-carboxyfluorescein-labelled Api137 and Onc112 in a competitive fluorescence polarization assay. In conclusion, Api137/Onc112-conjugates showed increased antimicrobial activities against P. aeruginosa and PrAMP-susceptible and -resistant E. coli most likely because of improved membrane interactions, whereas the interaction to the 70S ribosome was most likely not improved relying still on the independent apidaecin- and oncocin-type binding modes. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tina Goldbach
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.,Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Daniel Knappe
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.,Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Christoph Reinsdorf
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.,Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Thorsten Berg
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.,Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| |
Collapse
|
18
|
Abstract
Polo-like kinase 1 (Plk1), a key player in mitosis, is overexpressed in a wide range of tumor types and has been validated as a target for tumor therapy. In addition to its N-terminal kinase domain, Plk1 harbors a C-terminal protein-protein interaction domain, referred to as the polo-box domain (PBD). Because the PBD is unique to the five-member family of polo-like kinases, and its inhibition is sufficient to inhibit the enzyme, the Plk1 PBD is an attractive target for the inhibition of Plk1 function. Although peptide-based inhibitors are invaluable tools for elucidating the nature of the binding interface, small molecules are better suited for the induction of mitotic arrest and apoptosis in tumor cells by Plk1 inhibition. This review describes the considerable progress that has been made in developing small-molecule and peptide-based inhibitors of the Plk1 PBD.
Collapse
Affiliation(s)
- Angela Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|