1
|
Yuan K, Tang Y, Ding Z, Peng L, Zeng J, Wu H, Yi Q. Mutant ATRX: pathogenesis of ATRX syndrome and cancer. Front Mol Biosci 2024; 11:1434398. [PMID: 39479502 PMCID: PMC11521912 DOI: 10.3389/fmolb.2024.1434398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
The transcriptional regulator ATRX, a genetic factor, is associated with a range of disabilities, including intellectual, hematopoietic, skeletal, facial, and urogenital disabilities. ATRX mutations substantially contribute to the pathogenesis of ATRX syndrome and are frequently detected in gliomas and many other cancers. These mutations disrupt the organization, subcellular localization, and transcriptional activity of ATRX, leading to chromosomal instability and affecting interactions with key regulatory proteins such as DAXX, EZH2, and TERRA. ATRX also functions as a transcriptional regulator involved in the pathogenesis of neuronal disorders and various diseases. In conclusion, ATRX is a central protein whose abnormalities lead to multiple diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaying Wu
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Lopina OD, Sidorenko SV, Fedorov DA, Klimanova EA. G-Quadruplexes as Sensors of Intracellular Na+/K + Ratio: Potential Role in Regulation of Transcription and Translation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S262-S277. [PMID: 38621755 DOI: 10.1134/s0006297924140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 04/17/2024]
Abstract
Data on the structure of G-quadruplexes, noncanonical nucleic acid forms, supporting an idea of their potential participation in regulation of gene expression in response to the change in intracellular Na+i/K+i ratio are considered in the review. Structural variety of G-quadruplexes, role of monovalent cations in formation of this structure, and thermodynamic stability of G-quadruplexes are described. Data on the methods of their identification in the cells and biological functions of these structures are presented. Analysis of information about specific interactions of G-quadruplexes with some proteins was conducted, and their potential participation in the development of some pathological conditions, in particular, cancer and neurodegenerative diseases, is considered. Special attention is given to the plausible role of G-quadruplexes as sensors of intracellular Na+i/K+i ratio, because alteration of this parameter affects folding of G-quadruplexes changing their stability and, thereby, organization of the regulatory elements of nucleic acids. The data presented in the conclusion section demonstrate significant change in the expression of some early response genes under certain physiological conditions of cells and tissues depending on the intracellular Na+i/K+i ratio.
Collapse
Affiliation(s)
- Olga D Lopina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | | | - Dmitry A Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | |
Collapse
|
3
|
van Gerven MR, Schild L, van Arkel J, Koopmans B, Broeils LA, Meijs LAM, van Oosterhout R, van Noesel MM, Koster J, van Hooff SR, Molenaar JJ, van den Boogaard ML. Two opposing gene expression patterns within ATRX aberrant neuroblastoma. PLoS One 2023; 18:e0289084. [PMID: 37540673 PMCID: PMC10403137 DOI: 10.1371/journal.pone.0289084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 08/06/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. A subgroup of high-risk patients is characterized by aberrations in the chromatin remodeller ATRX that is encoded by 35 exons. In contrast to other pediatric cancer where ATRX point mutations are most frequent, multi-exon deletions (MEDs) are the most frequent type of ATRX aberrations in neuroblastoma. 75% of these MEDs are predicted to produce in-frame fusion proteins, suggesting a potential gain-of-function effect compared to nonsense mutations. For neuroblastoma there are only a few patient-derived ATRX aberrant models. Therefore, we created isogenic ATRX aberrant models using CRISPR-Cas9 in several neuroblastoma cell lines and one tumoroid and performed total RNA-sequencing on these and the patient-derived models. Gene set enrichment analysis (GSEA) showed decreased expression of genes related to both ribosome biogenesis and several metabolic processes in our isogenic ATRX exon 2-10 MED model systems, the patient-derived MED models and in tumor data containing two patients with an ATRX exon 2-10 MED. In sharp contrast, these same processes showed an increased expression in our isogenic ATRX knock-out and exon 2-13 MED models. Our validations confirmed a role of ATRX in the regulation of ribosome homeostasis. The two distinct molecular expression patterns within ATRX aberrant neuroblastomas that we identified imply that there might be a need for distinct treatment regimens.
Collapse
Affiliation(s)
- Michael R van Gerven
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Linda Schild
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Jennemiek van Arkel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Luuk A Broeils
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Loes A M Meijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Romy van Oosterhout
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
- Department of Cancer and Imaging, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands
| | - Jan Koster
- Department of Oncogenomics, University Medical Center Amsterdam, Amsterdam, North-Holland, The Netherlands
| | - Sander R van Hooff
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
4
|
Apsley AT, Domico ER, Verbiest MA, Brogan CA, Buck ER, Burich AJ, Cardone KM, Stone WJ, Anisimova M, Vandenbergh DJ. A novel hypervariable variable number tandem repeat in the dopamine transporter gene ( SLC6A3). Life Sci Alliance 2023; 6:e202201677. [PMID: 36754567 PMCID: PMC9909461 DOI: 10.26508/lsa.202201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
The dopamine transporter gene, SLC6A3, has received substantial attention in genetic association studies of various phenotypes. Although some variable number tandem repeats (VNTRs) present in SLC6A3 have been tested in genetic association studies, results have not been consistent. VNTRs in SLC6A3 that have not been examined genetically were characterized. The Tandem Repeat Annotation Library was used to characterize the VNTRs of 64 unrelated long-read haplotype-phased SLC6A3 sequences. Sequence similarity of each repeat unit of the five VNTRs is reported, along with the correlations of SNP-SNP, SNP-VNTR, and VNTR-VNTR alleles across the gene. One of these VNTRs is a novel hyper-VNTR (hyVNTR) in intron 8 of SLC6A3, which contains a range of 3.4-133.4 repeat copies and has a consensus sequence length of 38 bp, with 82% G+C content. The 38-base repeat was predicted to form G-quadruplexes in silico and was confirmed by circular dichroism spectroscopy. In addition, this hyVNTR contains multiple putative binding sites for PRDM9, which, in combination with low levels of linkage disequilibrium around the hyVNTR, suggests it might be a recombination hotspot.
Collapse
Affiliation(s)
- Abner T Apsley
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
- The Molecular, Cellular and Integrative Biosciences Program, The Pennsylvania State University, State College, PA, USA
| | - Emma R Domico
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Max A Verbiest
- Institute of Computational Life Science, School of Life Sciences and Facility Management, Zürich University of Applied Sciences, Wädenswil, Switzerland
- Department of Molecular Life Sciences, Faculty of Science, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Carly A Brogan
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Evan R Buck
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Andrew J Burich
- Department of Information Science and Technologies - Applied Data Sciences, The Pennsylvania State University, State College, PA, USA
| | - Kathleen M Cardone
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Wesley J Stone
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Maria Anisimova
- Institute of Computational Life Science, School of Life Sciences and Facility Management, Zürich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David J Vandenbergh
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
- The Molecular, Cellular and Integrative Biosciences Program, The Pennsylvania State University, State College, PA, USA
- Institute of the Neurosciences, The Pennsylvania State University, State College, PA, USA
- The Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| |
Collapse
|
5
|
Stilp AC, Scherer M, König P, Fürstberger A, Kestler HA, Stamminger T. The chromatin remodeling protein ATRX positively regulates IRF3-dependent type I interferon production and interferon-induced gene expression. PLoS Pathog 2022; 18:e1010748. [PMID: 35939517 PMCID: PMC9387936 DOI: 10.1371/journal.ppat.1010748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/18/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
The chromatin remodeling protein alpha thalassemia/mental retardation syndrome X-linked (ATRX) is a component of promyelocytic leukemia nuclear bodies (PML-NBs) and thereby mediates intrinsic immunity against several viruses including human cytomegalovirus (HCMV). As a consequence, viruses have evolved different mechanisms to antagonize ATRX, such as displacement from PML-NBs or degradation. Here, we show that depletion of ATRX results in an overall impaired antiviral state by decreasing transcription and subsequent secretion of type I IFNs, which is followed by reduced expression of interferon-stimulated genes (ISGs). ATRX interacts with the transcription factor interferon regulatory factor 3 (IRF3) and associates with the IFN-β promoter to facilitate transcription. Furthermore, whole transcriptome sequencing revealed that ATRX is required for efficient IFN-induced expression of a distinct set of ISGs. Mechanistically, we found that ATRX positively modulates chromatin accessibility specifically upon IFN signaling, thereby affecting promoter regions with recognition motifs for AP-1 family transcription factors. In summary, our study uncovers a novel co-activating function of the chromatin remodeling factor ATRX in innate immunity that regulates chromatin accessibility and subsequent transcription of interferons and ISGs. Consequently, ATRX antagonization by viral proteins and ATRX mutations in tumors represent important strategies to broadly compromise both intrinsic and innate immune responses. ATRX is a member of a family of chromatin remodeling proteins required for deposition of the histone variant H3.3 at specific genomic regions. This is important to maintain silencing at these sites. Furthermore, ATRX represents a component of PML nuclear bodies (PML-NBs) which are considered as enigmatic nuclear protein accumulations exhibiting a tight link to cell-intrinsic restriction of viral infections. Previous studies demonstrated that many viruses target ATRX by either displacement or degradation. So far, it is believed that this serves to alleviate ATRX-instituted silencing of viral gene expression. Our results reveal a novel and unexpectedly broad function of ATRX as a co-activator of the innate immune response. We show that ATRX is required for both DNA and RNA sensing pathways to activate interferon (IFN) gene expression as well as for upregulation of a distinct set of interferon-stimulated genes. Assessment of chromatin accessibility detected that IFN acts as a switch to regulate the function of ATRX in heterochromatin remodeling. ATRX positively modulates chromatin accessibility specifically upon IFN signaling, thereby affecting promoter regions with recognition motifs for AP-1 family transcription factors. Loss of ATRX due to viral infection or due to tumor mutations may thus broadly compromise cellular innate immunity.
Collapse
Affiliation(s)
| | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Patrick König
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Axel Fürstberger
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- * E-mail:
| |
Collapse
|
6
|
Dubrovin EV, Barinov NA, Klinov DV. Visualization of G-Quadruplexes, i-Motifs and Their Associates. Acta Naturae 2022; 14:4-18. [PMID: 36348720 PMCID: PMC9611856 DOI: 10.32607/actanaturae.11705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/13/2022] [Indexed: 09/07/2024] Open
Abstract
The non-canonical structures formed by G- or C-rich DNA regions, such as quadruplexes and i-motifs, as well as their associates, have recently been attracting increasing attention both because of the arguments in favor of their existence in vivo and their potential application in nanobiotechnology. When studying the structure and properties of non-canonical forms of DNA, as well as when controlling the artificially created architectures based on them, visualization plays an important role. This review analyzes the methods used to visualize quadruplexes, i-motifs, and their associates with high spatial resolution: fluorescence microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The key approaches to preparing specimens for the visualization of this type of structures are presented. Examples of visualization of non-canonical DNA structures having various morphologies, such as G-wires, G-loops, as well as individual quadruplexes, i-motifs and their associates, are considered. The potential for using AFM for visualizing non-canonical DNA structures is demonstrated.
Collapse
Affiliation(s)
- E. V. Dubrovin
- M.V. Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991 Russia
| | - N. A. Barinov
- M.V. Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991 Russia
| | - D. V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435 Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow, 117198 Russia
| |
Collapse
|
7
|
van Gerven MR, Bozsaky E, Matser YAH, Vosseberg J, Taschner-Mandl S, Koster J, Tytgat GAM, Molenaar JJ, van den Boogaard M. The mutational spectrum of ATRX aberrations in neuroblastoma and the associated patient and tumor characteristics. Cancer Sci 2022; 113:2167-2178. [PMID: 35384159 PMCID: PMC9207354 DOI: 10.1111/cas.15363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. The chromatin remodeler ATRX is frequently mutated in high‐risk patients with a poor prognosis. Although many studies have reported ATRX aberrations and the associated clinical characteristics in neuroblastoma, a comprehensive overview is currently lacking. In this study, we extensively characterize the mutational spectrum of ATRX aberrations in neuroblastoma tumors reported in previous studies and present an overview of patient and tumor characteristics. We collected the data of a total of 127 neuroblastoma patients and three cell lines with ATRX aberrations originating from 20 papers. We subdivide the ATRX aberrations into nonsense, missense, and multiexon deletions (MEDs) and show that 68% of them are MEDs. Of these MEDs, 75% are predicted to be in‐frame. Furthermore, we identify a missense mutational hotspot region in the helicase domain. We also confirm that all three ATRX mutation types are more often identified in patients diagnosed at an older age, but still approximately 40% of the patients are aged 5 years or younger at diagnosis. Surprisingly, we found that 11q deletions are enriched in neuroblastomas with ATRX deletions compared to a reference cohort, but not in neuroblastomas with ATRX point mutations. Taken together, our data emphasizes a distinct ATRX mutation spectrum in neuroblastoma, which should be considered when studying molecular phenotypes and therapeutic strategies.
Collapse
Affiliation(s)
| | - Eva Bozsaky
- Tumor biology group, St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Yvette A H Matser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Julian Vosseberg
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | | | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
8
|
Becher J, Berdnikova DV, Ihmels H, Stremmel C. Synthesis and investigation of quadruplex-DNA-binding, 9- O-substituted berberine derivatives. Beilstein J Org Chem 2020; 16:2795-2806. [PMID: 33281983 PMCID: PMC7684686 DOI: 10.3762/bjoc.16.230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
A small series of five novel berberine derivatives was synthesized by the Cu-catalyzed click reaction of 9-propargyladenine with 9-O-(azidoalkyl)berberine derivatives. The association of the resulting berberine-adenine conjugates with representative quadruplex-forming oligonucleotides 22AG dA(G3TTA)3G3 and a2 d(ACAG4TGTG4)2 was examined with photometric and fluorimetric titrations, thermal DNA denaturation analysis, and CD spectroscopy. The results from the spectrometric titrations indicated the formation of 2:1 or 1:1 complexes (ligand:G4-DNA) with log K b values of 10-11 (2:1) and 5-6 (1:1), which are typical for berberine derivatives. Notably, a clear relationship between the binding affinity of the ligands with the length of the alkyl linker chain, n, was not observed. However, depending on the structure, the ligands exhibited different effects when bound to the G4-DNA, such as fluorescent light-up effects and formation of ICD bands, which are mostly pronounced with a linker length of n = 4 (with a2) and n = 5 (with 22AG), thus indicating that each ligand-G4-DNA complex has a specific structure with respect to relative alignment and conformational flexibility of the ligand in the binding site. It was shown exemplarily with one representative ligand from the series that such berberine-adenine conjugates exhibit a selective binding, specifically a selectivity to quadruplex DNA in competition with duplex DNA, and a preferential thermal stabilization of the G4-DNA forms 22AG and KRAS. Notably, the experimental data do not provide evidence for a significant effect of the adenine unit on the binding affinity of the ligands, for example, by additional association with the loops, presumably because the adenine residue is sterically shielded by the neighboring triazole unit.
Collapse
Affiliation(s)
- Jonas Becher
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Daria V Berdnikova
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Christopher Stremmel
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
9
|
Feng Y, Endo M, Sugiyama H. Nucleosomes and Epigenetics from a Chemical Perspective. Chembiochem 2020; 22:595-612. [PMID: 32864867 DOI: 10.1002/cbic.202000332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Nucleosomes, which are the fundamental building blocks of chromatin, are highly dynamic, they play vital roles in the formation of higher-order chromatin structures and orchestrate gene regulation. Nucleosome structures, histone modifications, nucleosome-binding proteins, and their functions are being gradually unravelled with the development of epigenetics. With the continuous development of research approaches such as cryo-EM, FRET and next-generation sequencing for genome-wide analysis of nucleosomes, the understanding of nucleosomes is getting wider and deeper. Herein, we review recent progress in research on nucleosomes and epigenetics, from nucleosome structure to chromatin formation, with a focus on chemical aspects. Basic knowledge of the nucleosome (nucleosome structure, nucleosome position sequence, nucleosome assembly and remodeling), epigenetic modifications, chromatin structure, chemical biology methods and nucleosome, observation nucleosome by AFM, phase separation and nucleosomes are described in this review.
Collapse
Affiliation(s)
- Yihong Feng
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University Yoshida-Ushinomiyacho, Kyoto, 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University Yoshida-Ushinomiyacho, Kyoto, 606-8501, Japan
| |
Collapse
|
10
|
Asamitsu S, Yabuki Y, Ikenoshita S, Wada T, Shioda N. Pharmacological prospects of G-quadruplexes for neurological diseases using porphyrins. Biochem Biophys Res Commun 2020; 531:51-55. [DOI: 10.1016/j.bbrc.2020.01.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
|
11
|
Piekna-Przybylska D, Bambara RA, Maggirwar SB, Dewhurst S. G-quadruplex ligands targeting telomeres do not inhibit HIV promoter activity and cooperate with latency reversing agents in killing latently infected cells. Cell Cycle 2020; 19:2298-2313. [PMID: 32807015 DOI: 10.1080/15384101.2020.1796268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Altered telomere maintenance mechanism (TMM) is linked to increased DNA damage at telomeres and telomere uncapping. We previously showed that HIV-1 latent cells have altered TMM and are susceptible to ligands that target G-quadruplexes (G4) at telomeres. Susceptibility of latent cells to telomere targeting could potentially be used to support approaches to eradicate HIV reservoirs. However, G4 ligands also target G-quadruplexes in promoters blocking gene transcription. Since HIV promoter sequence can form G-quadruplexes, we investigated whether G4 ligands interfere with HIV-1 promoter activity and virus reactivation from latency, and whether telomere targeting could be combined with latency reversing agents (LRAs) to promote elimination of HIV reservoirs. Our results indicate that Sp1 binding region in HIV-1 promoter can adopt G4 structures in duplex DNA, and that in vitro binding of Sp1 to G-quadruplex is blocked by G4 ligand, suggesting that agents targeting telomeres interfere with virus reactivation. However, our studies show that G4 agents do not affect HIV-1 promoter activity in cell culture, and do not interfere with latency reversal. Importantly, primary memory CD4 + T cells infected with latent HIV-1 are more susceptible to combined treatment with LRAs and G4 ligands, indicating that drugs targeting TMM may enhance killing of HIV reservoirs. Using a cell-based DNA repair assay, we also found that HIV-1 infected cells have reduced efficiency of DNA mismatch repair (MMR), and base excision repair (BER), suggesting that altered TMM in latently infected cells could be associated with accumulation of DNA damage at telomeres and changes in telomeric caps.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester , Rochester, NY, USA
| | - Robert A Bambara
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester , Rochester, NY, USA
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University , Washington, DC, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester , Rochester, NY, USA
| |
Collapse
|
12
|
Genc A, Tastemir Korkmaz D, Bayram S, Rencuzogullari E. The Effect of Five Single Nucleotide Polymorphisms on Hb F Variation of β-Thalassemia Traits and Hematologically Normal Individuals in Southeast Turkey. Hemoglobin 2020; 44:231-239. [PMID: 32674697 DOI: 10.1080/03630269.2020.1787178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
β-Thalassemia (β-thal) is caused by deficiency of β-globin chain synthesis and leads to the accumulation of unstable globin chain production. This results in a higher Hb F level in order to neutralize the excess α chains. In addition, γ-globin gene expression, due to genetic factors after birth, leads to increased Hb F levels in adulthood [hereditary persistence of fetal hemoglobin (Hb) (HPFH)]. In this study, the relationship between β-thal trait and individuals with suspected HPFH and a control group was investigated in Adıyaman, Turkey. Single nucleotide polymorphism (SNP) analyses were performed in five different polymorphic regions using real-time polymerase chain reaction (qPCR) methods [rs4671393 (G>A), rs766432 (A>C), rs9402686 (G>A), rs28384513 (T>G), rs1609812 (A>G)]. No significant difference was found between the control and β-thal group in the codominant inheritance model in the rs1609812 (A>G) polymorphism region only, while all the other polymorphic regions were found to be statistically significant. It was found that different genotype models increased Hb F levels between 1.6- and 3.06-fold in four studied polymorphic regions [rs4671393 (G>A), rs766432 (A>C), rs9402686 (G>A), rs28384513 (T>G)]. All of the polymorphic regions increased the Hb F levels from 1.86- to 24.76-fold, except rs9402686 (G>A) and rs28384513 (T>G) over dominant and rs1609812 (A>G) codominant inheritance models. The AC and AA genotypes increased Hb F levels in the B-cell CLL/lymphoma 11 A haplotype studies. It was determined that both haplotypes 2 and 4 increased Hb F levels. As a result, SNPs strongly affect the Hb F levels in both healthy individuals and β-thal trait.
Collapse
Affiliation(s)
- Ahmet Genc
- Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey
| | | | - Suleyman Bayram
- Department of Nursing, School of Health, Adıyaman University, Adıyaman, Turkey
| | - Eyyup Rencuzogullari
- Department of Biology, Faculty of Science and Letters, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
13
|
Disruption of ATRX-RNA interactions uncovers roles in ATRX localization and PRC2 function. Nat Commun 2020; 11:2219. [PMID: 32376827 PMCID: PMC7203109 DOI: 10.1038/s41467-020-15902-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
Heterochromatin in the eukaryotic genome is rigorously controlled by the concerted action of protein factors and RNAs. Here, we investigate the RNA binding function of ATRX, a chromatin remodeler with roles in silencing of repetitive regions of the genome and in recruitment of the polycomb repressive complex 2 (PRC2). We identify ATRX RNA binding regions (RBRs) and discover that the major ATRX RBR lies within the N-terminal region of the protein, distinct from its PHD and helicase domains. Deletion of this ATRX RBR (ATRXΔRBR) compromises ATRX interactions with RNAs in vitro and in vivo and alters its chromatin binding properties. Genome-wide studies reveal that loss of RNA interactions results in a redistribution of ATRX on chromatin. Finally, our studies identify a role for ATRX-RNA interactions in regulating PRC2 localization to a subset of polycomb target genes. ATRX is an RNA binding protein that mediates targeting of polycomb repressive complex 2 (PRC2) to genomic sites. Here the authors identify the RNA binding region and show that the RNA binding is required for ATRX localization and for its recruitment of PRC2 to a subset of polycomb targets.
Collapse
|
14
|
Amato J, Miglietta G, Morigi R, Iaccarino N, Locatelli A, Leoni A, Novellino E, Pagano B, Capranico G, Randazzo A. Monohydrazone Based G-Quadruplex Selective Ligands Induce DNA Damage and Genome Instability in Human Cancer Cells. J Med Chem 2020; 63:3090-3103. [PMID: 32142285 PMCID: PMC7997572 DOI: 10.1021/acs.jmedchem.9b01866] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Targeting
G-quadruplex structures is currently viewed as a promising
anticancer strategy. Searching for potent and selective G-quadruplex
binders, here we describe a small series of new monohydrazone derivatives
designed as analogues of a lead which was proved to stabilize G-quadruplex
structures and increase R loop levels in human cancer cells. To investigate
the G-quadruplex binding properties of the new molecules, in vitro biophysical studies were performed employing both
telomeric and oncogene promoter G-quadruplex-forming sequences. The
obtained results allowed the identification of a highly selective
G-quadruplex ligand that, when studied in human cancer cells, proved
to be able to stabilize both G-quadruplexes and R loops and showed
a potent cell killing activity associated with the formation of micronuclei,
a clear sign of genome instability.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Giulia Miglietta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Rita Morigi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Alessandra Locatelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Alberto Leoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
15
|
Ihmels H, Karbasiyoun M, Löhl K, Stremmel C. Structural flexibility versus rigidity of the aromatic unit of DNA ligands: binding of aza- and azoniastilbene derivatives to duplex and quadruplex DNA. Org Biomol Chem 2019; 17:6404-6413. [PMID: 31225566 DOI: 10.1039/c9ob00809h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The known azastilbene (E)-1,2-di(quinolin-3-yl)ethane (2a) and the novel azoniastilbene derivatives (E)-2-(2-(naphthalen-2-yl)vinyl)quinolizinium (2b) and (E)-3,3'-(ethane-1,2-diyl)bis(1-methylquinolinin-1-ium) (2c) were synthesized. Their interactions with duplex and quadruplex DNA (G4-DNA) were studied by photometric, fluorimetric, polarimetric and flow-LD analysis, and by thermal DNA denaturation studies, as well as by 1H-NMR spectroscopy. The main goal of this study was a comparison of these conformationally flexible compounds with the known G4-DNA-binding diazoniadibenzo[b,k]chrysenes, that have a comparable π-system extent, but a rigid structure. We have observed that the aza- and azoniastilbene derivatives 2a-c, i.e. compounds with almost the same spatial dimensions and steric demand, bind to DNA with an affinity and selectivity that depends significantly on the number of positive charges. Whereas the charge neutral derivative 2a binds unspecifically to the DNA backbone of duplex DNA, the ionic compounds 2b and 2c are typical DNA intercalators. Notably, the bis-quinolinium derivative 2c binds to G4-DNA with moderate affinity (Kb = 4.8 × 105 M-1) and also stabilizes the G4-DNA towards thermal denaturation (ΔTm = 11 °C at ligand-DNA ratio = 5.0). Strikingly, the corresponding rigid counterpart, 4a,12a-diazonia-8,16-dimethyldibenzo[b,k]chrysene, stabilizes the G4-DNA to an even greater extent under identical conditions (ΔTm = 27 °C). These results indicate that the increased flexibility of a G4-DNA ligand does not necessarily lead to stronger interactions with the G4-DNA as compared with rigid ligands that have essentially the same size and π system extent.
Collapse
Affiliation(s)
- H Ihmels
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - M Karbasiyoun
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - K Löhl
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - C Stremmel
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
16
|
Asamitsu S, Obata S, Yu Z, Bando T, Sugiyama H. Recent Progress of Targeted G-Quadruplex-Preferred Ligands Toward Cancer Therapy. Molecules 2019; 24:E429. [PMID: 30682877 PMCID: PMC6384606 DOI: 10.3390/molecules24030429] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
A G-quadruplex (G4) is a well-known nucleic acid secondary structure comprising guanine-rich sequences, and has profound implications for various pharmacological and biological events, including cancers. Therefore, ligands interacting with G4s have attracted great attention as potential anticancer therapies or in molecular probe applications. To date, a large variety of DNA/RNA G4 ligands have been developed by a number of laboratories. As protein-targeting drugs face similar situations, G-quadruplex-interacting drugs displayed low selectivity to the targeted G-quadruplex structure. This low selectivity could cause unexpected effects that are usually reasons to halt the drug development process. In this review, we address the recent research on synthetic G4 DNA-interacting ligands that allow targeting of selected G4s as an approach toward the discovery of highly effective anticancer drugs.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Shunsuke Obata
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
- Institute for Integrated Cell-Material Science (WPI-iCeMS) Kyoto University, Yoshida-Ushinomiyacho, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
17
|
Asamitsu S, Bando T, Sugiyama H. Ligand Design to Acquire Specificity to Intended G-Quadruplex Structures. Chemistry 2018; 25:417-430. [PMID: 30051593 DOI: 10.1002/chem.201802691] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/14/2018] [Indexed: 12/17/2022]
Abstract
A G-quadruplex is a nucleic acid secondary structure that is adopted by guanine-rich sequences, and is considered to be relevant in various pharmacological and biological contexts. G-Quadruplexes have also attracted great attention in the field of DNA nanotechnology because of their extremely high thermal stability and the availability of many defined structures. To date, a large repertory of DNA/RNA G-quadruplex-interactive ligands has been developed by numerous laboratories. Several relevant reviews have also been published that have helped researchers to grasp the full scope of G-quadruplex research from its outset to the present. This review focuses on the G-quadruplex ligands that allow targeting of specific G-quadruplexes. Moreover, unique ligands, successful methodologies, and future perspectives in relation to specific G-quadruplex recognition are also addressed.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
18
|
Rowland ME, Jiang Y, Beier F, Bérubé NG. Inactivation of hepatic ATRX in Atrx Foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine. Aging (Albany NY) 2018; 10:1223-1238. [PMID: 29883366 PMCID: PMC6046231 DOI: 10.18632/aging.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/30/2018] [Indexed: 11/25/2022]
Abstract
ATRX is an ATP-dependent chromatin remodeler required for the maintenance of genomic integrity. We previously reported that conditional Atrx ablation in the mouse embryonic forebrain and anterior pituitary using the Foxg1cre driver causes reduced health and lifespan. In these mice, premature aging-like phenotypes were accompanied by low circulating levels of insulin-like growth factor 1 (IGF-1) and thyroxine (T4), hormones that maintain stem cell pools and normal metabolic profiles, respectively. Based on emerging evidence that T4 stimulates expression of IGF-1 in pre-pubertal mice, we tested whether T4 supplementation in Atrx Foxg1cre mice could restore IGF-1 levels and ameliorate premature aging-like phenotypes. Despite restoration of normal serum T4 levels, we did not observe improvements in circulating IGF-1. In the liver, thyroid hormone target genes were differentially affected upon T4 treatment, with Igf1 and several other thyroid hormone responsive genes failing to recover normal expression levels. These findings hinted at Cre-mediated Atrx inactivation in the liver of Atrx Foxg1cre mice, which we confirmed. We conclude that the phenotypes observed in the Atrx Foxg1cre mice can be explained in part by a role of ATRX in the liver to promote T4-mediated Igf1 expression, thus explaining the inefficacy of T4 therapy observed in this study.
Collapse
Affiliation(s)
- Megan E Rowland
- Departments of Paediatrics and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| | - Yan Jiang
- Departments of Paediatrics and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| | - Frank Beier
- Children's Health Research Institute, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Western Bone and Joint Institute, Western University, London, ON, Canada
| | - Nathalie G Bérubé
- Departments of Paediatrics and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| |
Collapse
|
19
|
Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome. Nat Med 2018; 24:802-813. [DOI: 10.1038/s41591-018-0018-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023]
|
20
|
Myoblast Myogenic Differentiation but Not Fusion Process Is Inhibited via MyoD Tetraplex Interaction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7640272. [PMID: 29854094 PMCID: PMC5964432 DOI: 10.1155/2018/7640272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 03/17/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
The presence of tetraplex structures in the promoter region of the myogenic differentiation 1 gene (MyoD1) was investigated with a specific tetraplex-binding porphyrin (TMPyP4), to test its influence on the expression of MyoD1 itself and downstream-regulated genes during myogenic differentiation. TMPyP4-exposed C2C12 myoblasts, blocking MyoD1 transcription, proliferated reaching confluence and fused forming elongated structures, resembling myotubes, devoid of myosin heavy chain 3 (MHC) expression. Besides lack of MHC, upon MyoD1 inhibition, other myogenic gene expressions were also affected in treated cells, while untreated control cell culture showed normal myotube formation expressing MyoD1, Myog, MRF4, Myf5, and MHC. Unexpectedly, the myomaker (Mymk) gene expression was not affected upon TMPyP4 exposure during C2C12 myogenic differentiation. At the genomic level, the bioinformatic comparison of putative tetraplex sites found that three tetraplexes in MyoD1 and Myog are highly conserved in mammals, while Mymk and MHC did not show any conserved tetraplexes in the analysed regions. Thus, here, we report for the first time that the inhibition of the MyoD1 promoter function, stabilizing the tetraplex region, affects downstream myogenic genes by blocking their expression, while leaving the expression of Mymk unaltered. These results reveal the existence of two distinct pathways: one leading to cell fusion and one guaranteeing correct myotube differentiation.
Collapse
|
21
|
Zheng KW, He YD, Liu HH, Li XM, Hao YH, Tan Z. Superhelicity Constrains a Localized and R-Loop-Dependent Formation of G-Quadruplexes at the Upstream Region of Transcription. ACS Chem Biol 2017; 12:2609-2618. [PMID: 28846373 DOI: 10.1021/acschembio.7b00435] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription induces formation of intramolecular G-quadruplex structures at the upstream region of a DNA duplex by an upward transmission of negative supercoiling through the DNA. Currently the regulation of such G-quadruplex formation remains unclear. Using plasmid as a model, we demonstrate that while it is the dynamic negative supercoiling generated by a moving RNA polymerase that triggers a formation of a G-quadruplex, the constitutional superhelicity determines the potential and range of the formation of a G-quadruplex by constraining the propagation of the negative supercoiling. G-quadruplex formation is maximal in negatively supercoiled and nearly abolished in relaxed plasmids while being moderate in nicked and linear ones. The formation of a G-quadruplex strongly correlates with the presence of an R-loop. Preventing R-loop formation virtually abolished G-quadruplex formation even in the negatively supercoiled plasmid. Enzymatic action and protein binding that manipulate supercoiling or its propagation all impact the formation of G-quadruplexes. Because chromosomes and plasmids in cells in their natural form are maintained in a supercoiled state, our findings reveal a physical basis that justifies the formation and regulation of G-quadruplexes in vivo. The structural features involved in G-quadruplex formation may all serve as potential targets in clinical and therapeutic applications.
Collapse
Affiliation(s)
- Ke-wei Zheng
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yi-de He
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Hong-he Liu
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xin-min Li
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yu-hua Hao
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Zheng Tan
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
22
|
Bao H, Ishizuka T, Iwanami A, Oyoshi T, Xu Y. A Simple and Sensitive
19
F NMR Approach for Studying the Interaction of RNA G‐Quadruplex with Ligand Molecule and Protein. ChemistrySelect 2017. [DOI: 10.1002/slct.201700711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hong‐Liang Bao
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Ayaka Iwanami
- Faculty of Science, Department of ChemistryShizuoka University 836 Ohya Suruga Shizuoka 422-8529 Japan
| | - Takanori Oyoshi
- Faculty of Science, Department of ChemistryShizuoka University 836 Ohya Suruga Shizuoka 422-8529 Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| |
Collapse
|
23
|
Rigo R, Palumbo M, Sissi C. G-quadruplexes in human promoters: A challenge for therapeutic applications. Biochim Biophys Acta Gen Subj 2016; 1861:1399-1413. [PMID: 28025083 DOI: 10.1016/j.bbagen.2016.12.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND G-rich sequences undergo unique structural equilibria to form G-quadruplexes (G4) both in vitro and in cell systems. Several pathologies emerged to be directly related to G4 occurrence at defined genomic portions. Additionally, G-rich sequences are significantly represented around transcription start sites (TSS) thus leading to the hypothesis of a gene regulatory function for G4. Thus, the tuning of G4 formation has been proposed as a new powerful tool to regulate gene expression to treat related pathologies. However, up-to date this approach did not provide any new really efficient treatment. SCOPE OF REVIEW Here, we summarize the most recent advances on the correlation between the structural features of G4 in human promoters and the role these systems physiologically exert. In particular we focus on the effect of G4 localization among cell compartments and along the promoters in correlation with protein interaction networks and epigenetic state. Finally the intrinsic structural features of G4 at promoters are discussed to unveil the contribution of different G4 structural modules in this complex architecture. MAJOR CONCLUSIONS It emerges that G4s play several roles in the intriguing and complex mechanism of gene expression, being able to produce opposite effects on the same target. This reflects the occurrence of a highly variegate network of several components working simultaneously. GENERAL SIGNIFICANCE The resulting picture is still fuzzy but some points of strength are definitely emerging, which prompts all of us to strengthen our efforts in view of a selective control of gene expression through G4 modulation. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Riccardo Rigo
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo, 5, 35131 Padova, Italy
| | - Manlio Palumbo
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo, 5, 35131 Padova, Italy
| | - Claudia Sissi
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|