1
|
Singh A, Singh N, Jinugu ME, Thareja P, Bhatia D. Programmable soft DNA hydrogels stimulate cellular endocytic pathways and proliferation. BIOMATERIALS ADVANCES 2025; 166:214040. [PMID: 39293253 DOI: 10.1016/j.bioadv.2024.214040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Hydrogels are pivotal in tissue engineering, regenerative medicine, and drug delivery applications. Existing hydrogel platforms are not easily customizable and often lack precise programmability, making them less suited for 3D tissue culture and programming of cells. DNA molecules stand out among other promising biomaterials due to their unparalleled precision, programmability, and customization. In this study, we introduced a palette of novel cellular scaffolding platforms made of pure DNA-based hydrogel systems while improving the shortcomings of the existing platforms. We showed a quick and easy one step synthesis of DNA hydrogels using thermal annealing based on sequence specific hybridization strategy. We also demonstrated the formation of multi-armed branched supramolecular scaffolds with custom mechanical stiffness, porosity, and network density by increasing or decreasing the number of branching arms. These mechanically tuneable DNA hydrogels proved to be a suitable suitable platform for modulating the physiological processes of retinal pigment epithelial cells (RPE1). In-vitro studies showed dynamic changes at multiple levels, ranging from a change in morphology to protein expression patterns, enhanced membrane traffic, and proliferation. The soft DNA hydrogels explored here are mechanically compliant and pliable, thus excellently suited for applications in cellular programming and reprogramming. This research lays the groundwork for developing a DNA hydrogel system with a higher dynamic range of stiffness, which will open exciting avenues for tissue engineering and beyond.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Nihal Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Manasi Esther Jinugu
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India; Dr. Kiran C Patel Center for Sustainable Development (KPCSD), Indian Institute of Technology Gandhinagar, India
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
2
|
Li G, Gao F, Yang D, Lin L, Yu W, Tang J, Yang R, Jin M, Gu Y, Wang P, Lu E. ECM-mimicking composite hydrogel for accelerated vascularized bone regeneration. Bioact Mater 2024; 42:241-256. [PMID: 39285909 PMCID: PMC11404060 DOI: 10.1016/j.bioactmat.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Bioactive hydrogel materials have great potential for applications in bone tissue engineering. However, fabrication of functional hydrogels that mimic the natural bone extracellular matrix (ECM) remains a challenge, because they need to provide mechanical support and embody physiological cues for angiogenesis and osteogenesis. Inspired by the features of ECM, we constructed a dual-component composite hydrogel comprising interpenetrating polymer networks of gelatin methacryloyl (GelMA) and deoxyribonucleic acid (DNA). Within the composite hydrogel, the GelMA network serves as the backbone for mechanical and biological stability, whereas the DNA network realizes dynamic capabilities (e.g., stress relaxation), thereby promoting cell proliferation and osteogenic differentiation. Furthermore, functional aptamers (Apt19S and AptV) are readily attached to the DNA network to recruit bone marrow mesenchymal stem cells (BMSCs) and achieve sustained release of loaded vascular endothelial growth factor towards angiogenesis. Our results showed that the composite hydrogel could facilitate the adhesion of BMSCs, promote osteogenic differentiation by activating focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/β-Catenin signaling pathway, and eventually enhance vascularized bone regeneration. This study shows that the multifunctional composite hydrogel of GelMA and DNA can successfully simulate the biological functions of natural bone ECM and has great potential for repairing bone defects.
Collapse
Affiliation(s)
- Guanglong Li
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Fei Gao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Lu Lin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Weijun Yu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Jiaqi Tang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ruhan Yang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Min Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| |
Collapse
|
3
|
Li Y, Chen R, Zhou B, Dong Y, Liu D. Rational Design of DNA Hydrogels Based on Molecular Dynamics of Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307129. [PMID: 37820719 DOI: 10.1002/adma.202307129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Indexed: 10/13/2023]
Abstract
In recent years, DNA has emerged as a fascinating building material to engineer hydrogel due to its excellent programmability, which has gained considerable attention in biomedical applications. Understanding the structure-property relationship and underlying molecular determinants of DNA hydrogel is essential to precisely tailor its macroscopic properties at molecular level. In this review, the rational design principles of DNA molecular networks based on molecular dynamics of polymers on the temporal scale, which can be engineered via the backbone rigidity and crosslinking kinetics, are highlighted. By elucidating the underlying molecular mechanisms and theories, it is aimed to provide a comprehensive overview of how the tunable DNA backbone rigidity and the crosslinking kinetics lead to desirable macroscopic properties of DNA hydrogels, including mechanical properties, diffusive permeability, swelling behaviors, and dynamic features. Furthermore, it is also discussed how the tunable macroscopic properties make DNA hydrogels promising candidates for biomedical applications, such as cell culture, tissue engineering, bio-sensing, and drug delivery.
Collapse
Affiliation(s)
- Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruofan Chen
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bini Zhou
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Shi J, Zhang B, Zheng T, Zhou T, Guo M, Wang Y, Dong Y. DNA Materials Assembled from One DNA Strand. Int J Mol Sci 2023; 24:ijms24098177. [PMID: 37175884 PMCID: PMC10179628 DOI: 10.3390/ijms24098177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Due to the specific base-pairing recognition, clear nanostructure, programmable sequence and responsiveness of the DNA molecule, DNA materials have attracted extensive attention and been widely used in controlled release, drug delivery and tissue engineering. Generally, the strategies for preparing DNA materials are based on the assembly of multiple DNA strands. The construction of DNA materials using only one DNA strand can not only save time and cost, but also avoid defects in final assemblies generated by the inaccuracy of DNA ratios, which potentially promote the large-scale production and practical application of DNA materials. In order to use one DNA strand to form assemblies, the sequences have to be palindromes with lengths that need to be controlled carefully. In this review, we introduced the development of DNA assembly and mainly summarized current reported materials formed by one DNA strand. We also discussed the principle for the construction of DNA materials using one DNA strand.
Collapse
Affiliation(s)
- Jiezhong Shi
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Ben Zhang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Tianyi Zheng
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Tong Zhou
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Min Guo
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Ying Wang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Udono H, Gong J, Sato Y, Takinoue M. DNA Droplets: Intelligent, Dynamic Fluid. Adv Biol (Weinh) 2023; 7:e2200180. [PMID: 36470673 DOI: 10.1002/adbi.202200180] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets.
Collapse
Affiliation(s)
- Hirotake Udono
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| |
Collapse
|
6
|
Chen C, Zhou J, Chen J, Liu H. Advances in DNA Supramolecular Hydrogels for Tissue Engineering. Macromol Biosci 2022; 22:e2200152. [PMID: 35917391 DOI: 10.1002/mabi.202200152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Indexed: 01/15/2023]
Abstract
Deoxyribonucleic acid (DNA) is a biological macromolecule that plays a genetic role in cells. DNA molecules with specific recognition, self-assembly capabilities, and sequence programmability have become an excellent construction material for micro- and nanostructures. Based on DNA self-assembly technology, a series of molecular devices and materials are constructed. Among them, DNA hydrogels with the advantages of good biocompatibility, biodegradability, and containing designable stimuli-responsive units have attracted much attention. This review introduces the formation strategy of DNA supramolecular hydrogels, and focuses on its applications in tissue engineering, including cell encapsulation, cell culture, cell capture and release, wound dressings, and tissue growth. The unique properties and application prospects of DNA supramolecular hydrogels in tissue engineering are also discussed.
Collapse
Affiliation(s)
- Chun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Jiaying Zhou
- School of Chemical Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education and Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, China
| | - Jie Chen
- School of Chemical Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education and Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education and Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, China
| |
Collapse
|
7
|
Li X, Dai X, Pan Y, Sun Y, Yang B, Chen K, Wang Y, Xu JF, Dong Y, Yang YR, Yan LT, Liu D. Studies on the Synergistic Effect of Tandem Semi-Stable Complementary Domains on Sequence-Defined DNA Block Copolymers. J Am Chem Soc 2022; 144:21267-21277. [DOI: 10.1021/jacs.2c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xin Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yufan Pan
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (Huadong), Qingdao 258000, China
| | - Bo Yang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kun Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - You Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yuhe Renee Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Qu Y, Shen F, Zhang Z, Wang Q, Huang H, Xu Y, Li Q, Zhu X, Sun L. Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45079-45095. [PMID: 36171537 DOI: 10.1021/acsami.2c13768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, nanoscale or microscale functional materials derived from DNA have shown great potential for immunotherapy as superior delivery carriers. DNA nanostructures with excellent programmability and addressability enable the precise assembly of molecules or nanoparticles. DNA hydrogels have predictable structures and adjustable mechanical strength, thus being advantageous in controllable release of cargos. In addition, utilizing systematic evolution of ligands by exponential enrichment technology, a variety of DNA aptamers have been screened for specific recognition of ions, molecules, and even cells. Moreover, a wide variety of chemical modifications can further enrich the function of DNA. The unique advantages of functional DNA materials make them extremely attractive in immunomodulation. Recently, functional DNA materials-based immunotherapy has shown great potential in fighting against many diseases like cancer, viral infection, and inflammation. Therefore, in this review, we focus on discussing the progress of the applications of functional DNA materials in immunotherapy; before that, we also summarize the characteristics of the functional DNA materials descried above. Finally, we discuss the challenges and future opportunities of functional DNA materials in immunomodulatory therapy.
Collapse
Affiliation(s)
- Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Wei Y, Wang K, Luo S, Li F, Zuo X, Fan C, Li Q. Programmable DNA Hydrogels as Artificial Extracellular Matrix. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107640. [PMID: 35119201 DOI: 10.1002/smll.202107640] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The cell microenvironment plays a crucial role in regulating cell behavior and fate in physiological and pathological processes. As the fundamental component of the cell microenvironment, extracellular matrix (ECM) typically possesses complex ordered structures and provides essential physical and chemical cues to the cells. Hydrogels have attracted much attention in recapitulating the ECM. Compared to natural and synthetic polymer hydrogels, DNA hydrogels have unique programmable capability, which endows the material precise structural customization and tunable properties. This review focuses on recent advances in programmable DNA hydrogels as artificial extracellular matrix, particularly the pure DNA hydrogels. It introduces the classification, design, and assembly of DNA hydrogels, and then summarizes the state-of-the-art achievements in cell encapsulation, cell culture, and tissue engineering with DNA hydrogels. Ultimately, the challenges and prospects for cellular applications of DNA hydrogels are delivered.
Collapse
Affiliation(s)
- Yuhan Wei
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaizhe Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shihua Luo
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| |
Collapse
|
10
|
Budharaju H, Zennifer A, Sethuraman S, Paul A, Sundaramurthi D. Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications. MATERIALS HORIZONS 2022; 9:1141-1166. [PMID: 35006214 DOI: 10.1039/d1mh01632f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA has excellent features such as the presence of functional and targeted molecular recognition motifs, tailorability, multifunctionality, high-precision molecular self-assembly, hydrophilicity, and outstanding biocompatibility. Due to these remarkable features, DNA has emerged as a leading next-generation biomaterial of choice to make hydrogels by self-assembly. In recent times, novel routes for the chemical synthesis of DNA, advances in tailorable designs, and affordable production ways have made DNA as a building block material for various applications. These advanced features have made researchers continuously explore the interesting properties of pure and hybrid DNA for 3D bioprinting and other biomedical applications. This review article highlights the topical advancements in the use of DNA as an ideal bioink for the bioprinting of cell-laden three-dimensional tissue constructs for regenerative medicine applications. Various bioprinting techniques and emerging design approaches such as self-assembly, nucleotide sequence, enzymes, and production cost to use DNA as a bioink for bioprinting applications are described. In addition, various types and properties of DNA hydrogels such as stimuli responsiveness and mechanical properties are discussed. Further, recent progress in the applications of DNA in 3D bioprinting are emphasized. Finally, the current challenges and future perspectives of DNA hydrogels in 3D bioprinting and other biomedical applications are discussed.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
11
|
Affiliation(s)
- Dong Wang
- Department of Biological and Environmental Engineering Cornell University Ithaca New York 14853 USA
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Micro-Nano Research and Diagnosis Center Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Dan Luo
- Department of Biological and Environmental Engineering Cornell University Ithaca New York 14853 USA
- Kavli Institute at Cornell for Nanoscale Science Cornell University Ithaca New York 14853 USA
| |
Collapse
|
12
|
Dong Y, Combs JD, Cao C, Weeks ER, Bazrafshan A, Rashid SA, Salaita K. Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution. NANO LETTERS 2021; 21:9958-9965. [PMID: 34797077 DOI: 10.1021/acs.nanolett.1c03399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogels embedded with periodic arrays of nanoparticles display a striking photonic crystal coloration that may be useful for applications such as camouflage, anticounterfeiting, and chemical sensing. Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. Magnetic nanoparticles entrapped within these DNA gels generate a structural color only when the gel is heated and a magnetic field is applied. A spatially controlled photonic crystal coloration was achieved by photopatterning with a near-infrared illumination. Color was "erased" by illuminating or heating the gel in the absence of an external magnetic field. The on-demand assembly technology demonstrated here may be beneficial for the development of a new generation of smart materials with potential applications in erasable lithography, encryption, and sensing.
Collapse
Affiliation(s)
- Yixiao Dong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - J Dale Combs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Cong Cao
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Eric R Weeks
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Alisina Bazrafshan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Sk Aysha Rashid
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
Bayer IS. A Review of Sustained Drug Release Studies from Nanofiber Hydrogels. Biomedicines 2021; 9:1612. [PMID: 34829843 PMCID: PMC8615759 DOI: 10.3390/biomedicines9111612] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Polymer nanofibers have exceptionally high surface area. This is advantageous compared to bulk polymeric structures, as nanofibrils increase the area over which materials can be transported into and out of a system, via diffusion and active transport. On the other hand, since hydrogels possess a degree of flexibility very similar to natural tissue, due to their significant water content, hydrogels made from natural or biodegradable macromolecular systems can even be injectable into the human body. Due to unique interactions with water, hydrogel transport properties can be easily modified and tailored. As a result, combining nanofibers with hydrogels would truly advance biomedical applications of hydrogels, particularly in the area of sustained drug delivery. In fact, certain nanofiber networks can be transformed into hydrogels directly without the need for a hydrogel enclosure. This review discusses recent advances in the fabrication and application of biomedical nanofiber hydrogels with a strong emphasis on drug release. Most of the drug release studies and recent advances have so far focused on self-gelling nanofiber systems made from peptides or other natural proteins loaded with cancer drugs. Secondly, polysaccharide nanofiber hydrogels are being investigated, and thirdly, electrospun biodegradable polymer networks embedded in polysaccharide-based hydrogels are becoming increasingly popular. This review shows that a major outcome from these works is that nanofiber hydrogels can maintain drug release rates exceeding a few days, even extending into months, which is an extremely difficult task to achieve without the nanofiber texture. This review also demonstrates that some publications still lack careful rheological studies on nanofiber hydrogels; however, rheological properties of hydrogels can influence cell function, mechano-transduction, and cellular interactions such as growth, migration, adhesion, proliferation, differentiation, and morphology. Nanofiber hydrogel rheology becomes even more critical for 3D or 4D printable systems that should maintain sustained drug delivery rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
14
|
Yang B, Zhao Z, Pan Y, Xie J, Zhou B, Li Y, Dong Y, Liu D. Shear-Thinning and Designable Responsive Supramolecular DNA Hydrogels Based on Chemically Branched DNA. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48414-48422. [PMID: 34633793 DOI: 10.1021/acsami.1c15494] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel supramolecular DNA hydrogel system was designed based on a directly synthesized chemically branched DNA. For the hydrogel formation, a self-dimer DNA with two sticky ends was designed as the linker to induce the gelation of B-Y. By programing the linker sequence, thermal and metal-ion responsiveness could be introduced into this hydrogel system. This supramolecular DNA hydrogel shows shear-thinning, designable responsiveness, and good biocompatibility, which will simplify the hydrogel composition and preparation process of the supramolecular DNA hydrogel and accelerate its biomedical applications.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhihan Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yufan Pan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiayin Xie
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Wang D, Liu P, Luo D. Putting DNA to Work as Generic Polymeric Materials. Angew Chem Int Ed Engl 2021; 61:e202110666. [PMID: 34545660 DOI: 10.1002/anie.202110666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 01/10/2023]
Abstract
DNA is a true polymer that stores the genetic information of an organism. With its amazing biological and polymeric characteristics, DNA has been regarded as a universal building block for the construction of diverse materials for real-world applications. Through various approaches including ligation, polymerization, chemical crosslinking, and physical crosslinking, both pure and hybrid DNA gels have been developed as generic materials. This Review discusses recent advances in the construction of DNA-based networks without considering any of DNA's genetic properties. In addition, we highlight the biomedical and non-biomedical applications of DNA as generic materials. Owing to the superb molecular recognition, self-assembly, and responsiveness of DNA, a mushrooming number of DNA materials with various properties have been developed for general utilization.
Collapse
Affiliation(s)
- Dong Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.,Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
16
|
|
17
|
Wang DX, Wang J, Wang YX, Du YC, Huang Y, Tang AN, Cui YX, Kong DM. DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem Sci 2021; 12:7602-7622. [PMID: 34168817 PMCID: PMC8188511 DOI: 10.1039/d1sc00587a] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.
Collapse
Affiliation(s)
- Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jing Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yan Huang
- College of Life Sciences, Nankai University Tianjin 300071 P. R. China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- College of Life Sciences, Nankai University Tianjin 300071 P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
18
|
Chu J, Chen C, Li X, Yu L, Li W, Cheng M, Tang W, Xiong Z. A responsive pure DNA hydrogel for label-free detection of lead ion. Anal Chim Acta 2021; 1157:338400. [PMID: 33832594 DOI: 10.1016/j.aca.2021.338400] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/05/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
It is of great significance to develop facile and economical strategies for on-site detection and treatment of toxic metal ions. Stimulus-responsive DNA hydrogel materials have been increasingly used for convenient detection of metal ions due to their advantages such as simplicity, portability, and ease of storage. However, these methods still require encapsulation of signal tags by labeling or embedding. In this paper, a one-step preparation of Pb2+-responsive pure DNA hydrogel material was designed to realize a new label-free strategy for Pb2+ biosensing. The Pb2+-dependent DNAzyme strand and substrate strand were introduced to fabricate the DNA hydrogel. The presence of Pb2+ in the sample activates the enzyme strand in the hydrogel skeleton and triggers the cleavage of the substrate, thereby destroy the hydrogel structure. DNA fragments released by the collapsed hydrogel were readily measured as signal output for quantifying Pb2+ concentrations with a minimum detection limit of 7.7 nM. We successfully eliminated the need for embedding or labeling of signal molecules by using the DNA molecules that construct hydrogels as the signal output. And the newly developed method for label-free detection of Pb2+ based on pure DNA hydrogel is simple, easy readout, and cost-effective. By adjusting the DNAzyme and substrate sequences, label-free analysis of other metal ions can also be achieved. We expect that our strategy can be applied to the field detection of toxic metal ions.
Collapse
Affiliation(s)
- Jian Chu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Chun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Xijian Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Wenjing Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Mengxi Cheng
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China.
| | - Zhonghua Xiong
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| |
Collapse
|
19
|
Mechanical Properties of DNA Hydrogels: Towards Highly Programmable Biomaterials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA hydrogels are self-assembled biomaterials that rely on Watson–Crick base pairing to form large-scale programmable three-dimensional networks of nanostructured DNA components. The unique mechanical and biochemical properties of DNA, along with its biocompatibility, make it a suitable material for the assembly of hydrogels with controllable mechanical properties and composition that could be used in several biomedical applications, including the design of novel multifunctional biomaterials. Numerous studies that have recently emerged, demonstrate the assembly of functional DNA hydrogels that are responsive to stimuli such as pH, light, temperature, biomolecules, and programmable strand-displacement reaction cascades. Recent studies have investigated the role of different factors such as linker flexibility, functionality, and chemical crosslinking on the macroscale mechanical properties of DNA hydrogels. In this review, we present the existing data and methods regarding the mechanical design of pure DNA hydrogels and hybrid DNA hydrogels, and their use as hydrogels for cell culture. The aim of this review is to facilitate further study and development of DNA hydrogels towards utilizing their full potential as multifeatured and highly programmable biomaterials with controlled mechanical properties.
Collapse
|
20
|
He M, Nandu N, Uyar TB, Royzen M, Yigit MV. Small molecule-induced DNA hydrogel with encapsulation and release properties. Chem Commun (Camb) 2021; 56:7313-7316. [PMID: 32478344 DOI: 10.1039/d0cc03439h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogels are networks of polymers that can be used for packaging different payload types. They are proven to be versatile materials for various biomedical applications. Implanted hydrogels with encapsulated drugs have been shown to release the therapeutic payloads at disease sites. Hydrogels are usually made through chemical polymerization reactions. Whereas, DNA is a naturally occurring biopolymer which can assemble into highly ordered structures through noncovalent interactions. Here, we have employed a small molecule, cyanuric acid (CA), to assemble polyA-tailed DNA motif into a hydrogel. Encapsulation of a small molecule chemotherapeutic drug, a fluorescent molecule, two proteins and several nanoparticle formulations has been studied. Release of doxorubicin, small fluorescent molecule and fluorescently-labeled antibodies has been demonstrated.
Collapse
Affiliation(s)
- Muhan He
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Nidhi Nandu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Taha Bilal Uyar
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Maksim Royzen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA
| |
Collapse
|
21
|
Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 2021; 168:79-98. [PMID: 32712197 DOI: 10.1016/j.addr.2020.07.018] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Deoxyribonucleic acid (DNA) is a promising synthesizer for precisely constructing almost arbitrary geometry in two and three dimensions. Among various DNA-based soft materials, DNA hydrogels are comprised of hydrophilic polymeric networks of crosslinked DNA chains. For their properties of biocompatibility, porosity, sequence programmability and tunable multifunctionality, DNA hydrogels have been widely studied in bioanalysis and biomedicine. In this review, recent developments in DNA hydrogels and their applications in drug delivery systems are highlighted. First, physical and chemical crosslinking methods for constructing DNA hydrogels are introduced. Subsequently, responses of DNA hydrogels to nonbiological and biological stimuli are described. Finally, DNA hydrogel-based delivery platforms for different types of drugs are detailed. With the emergence of gene therapy, this review also gives future prospects for combining DNA hydrogels with the gene editing toolbox.
Collapse
|
22
|
|
23
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
24
|
Vázquez‐González M, Willner I. Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
25
|
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem Rev 2020; 120:9420-9481. [DOI: 10.1021/acs.chemrev.0c00294] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lu Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
26
|
Chen J, Zhu Y, Liu H, Wang L. Tailoring DNA Self-assembly to Build Hydrogels. Top Curr Chem (Cham) 2020; 378:32. [PMID: 32146604 DOI: 10.1007/s41061-020-0295-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/23/2020] [Indexed: 01/12/2023]
Abstract
DNA hydrogels are crosslinked polymeric networks in which DNA is used as the backbone or the crosslinker. These hydrogels are novel biofunctional materials that possess the biological character of DNA and the framed structure of hydrogels. Compared with other kinds of hydrogels, DNA hydrogels exhibit not only high mechanical strength and controllable morphologies but also good recognition ability, designable responsiveness, and programmability. The DNA used in this type of hydrogel acts as a building block for self-assembly or as a responsive element due to its sequence recognition ability and switchable structural transitions, respectively. In this review, we describe recent developments in the field of DNA hydrogels and discuss the role played by DNA in these hydrogels. Various synthetic strategies for and a range of applications of DNA hydrogels are detailed.
Collapse
Affiliation(s)
- Jie Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China. .,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| |
Collapse
|
27
|
Zhang T, Nong J, Alzahrani N, Wang Z, Oh SW, Meier T, Yang DG, Ke Y, Zhong Y, Fu J. Self-Assembly of DNA-Minocycline Complexes by Metal Ions with Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29512-29521. [PMID: 31397552 DOI: 10.1021/acsami.9b08126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we reported a study of metal ions-assisted assembly of DNA-minocycline (MC) complexes and their potential application for controlling MC release. In the presence of divalent cations of magnesium or calcium ions (M2+), MC, a zwitterionic tetracycline analogue, was found to bind to phosphate groups of nucleic acids via an electrostatic bridge of phosphate (DNA)-M2+-MC. We investigated multiple parameters for affecting the formation of DNA-Mg2+-MC complex, including metal ion concentrations, base composition, DNA length, and single- versus double-stranded DNA. For different nitrogen bases, single-stranded poly(A)20 and poly(T)20 showed a higher MC entrapment efficiency of DNA-Mg2+-MC complex than poly(C)20 and poly(G)20. Single-stranded DNA was also found to form a more stable DNA-Mg2+-MC complex than double-stranded DNA. Between different divalent metal ions, we observed that the formation of DNA-Ca2+-MC complex was more stable and efficient than the formation of DNA-Mg2+-MC complex. Toward drug release, we used agarose gel to encapsulate DNA-Mg2+-MC complexes and monitored MC release. Some DNA-Mg2+-MC complexes could prolong MC release from agarose gel to more than 10 days as compared with the quick release of free MC from agarose gel in less than 1 day. The released MC from DNA-Mg2+-MC complexes retained the anti-inflammatory bioactivity to inhibit nitric oxide production from pro-inflammatory macrophages. The reported study of metal ion-assisted DNA-MC assembly not only increased our understanding of biochemical interactions between tetracycline molecules and nucleic acids but also contributed to the development of a highly tunable drug delivery system to mediate MC release for clinical applications.
Collapse
Affiliation(s)
- Ting Zhang
- Center for Computational and Integrative Biology , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Nouf Alzahrani
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Sung Won Oh
- Center for Computational and Integrative Biology , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Tristan Meier
- Eastern Regional High School , 1401 Laurel Oak Road , Voorhees , New Jersey 08043 , United States
| | - Dong Gyu Yang
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering , Emory School of Medicine , 1760 Haygood Drive , Atlanta , Georgia 30322 , United States
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Jinglin Fu
- Center for Computational and Integrative Biology , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| |
Collapse
|
28
|
Zeng J, Fu W, Qi Z, Zhu Q, He H, Huang C, Zuo H, Mao C. Self-Assembly of Microparticles by Supramolecular Homopolymerization of One Component DNA Molecule. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805552. [PMID: 30734479 DOI: 10.1002/smll.201805552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/18/2019] [Indexed: 06/09/2023]
Abstract
DNA is a superb molecule for self-assembly of nanostructures. Often many DNA strands are required for the assembly of one DNA nanostructure. For lowering the cost of synthesizing DNA strands and facilitating the assembly process, it is highly desirable to use a minimal number of unique strands for potential technological applications. Herein, a strategy is reported to assemble a series of DNA microparticles (DNAµPs) from one component DNA strand. As a demonstration of the application of the resulting DNAµPs, the design and assembled DNAµPs are modified to carry additional single-stranded tails on their surfaces. The modified DNAµPs can either capture other nucleic acids or display CpG motifs to stimulate immune responses.
Collapse
Affiliation(s)
- Jie Zeng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Wenhao Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Zhenping Qi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Qiushuang Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Huawei He
- Biological Science Research Center, Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Hua Zuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Chengde Mao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
29
|
Control and optical mapping of mechanical transitions in polymer networks and DNA-based soft materials. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Oishi M, Nakatani K. Dynamically Programmed Switchable DNA Hydrogels Based on a DNA Circuit Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900490. [PMID: 30859712 DOI: 10.1002/smll.201900490] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Biological stimuli-responsive DNA hydrogels have attracted much attention in the field of medical engineering owing to their unique phase transitions from gel to sol through cleavage of DNA cross-linking points in response to specific biomolecular inputs. In this paper, a new class of biological stimuli-responsive DNA hydrogels with a dynamically programmed DNA system that relies on a DNA circuit system through cascading toehold-mediated DNA displacement reactions is constructed, allowing the catalytic cleavage of cross-linking points and main chains in response to an appropriate DNA input. The dynamically programmed DNA hydrogels exhibit a significant sharp phase transition from gel to sol in comparison to another DNA hydrogel showing noncatalytic cleavage of cross-linking points due to synchronization of the catalytic cleavage of cross-linking points and the main chains. Further, the sol-gel phase transitions of the DNA hydrogels in response to the DNA input are easily tunable by changing the cross-linking density. Additionally, with a structure-switching aptamer, DNA hydrogels encapsulating PEGylated gold nanoparticles can be used as enzyme-free signal amplifiers for the colorimetric detection of adenosine 5'-triphosphate (ATP); this detection system provides simplicity and higher sensitivity (limit of detection: 5.6 × 10-6 m at 30 min) compared to other DNA hydrogel-based ATP detection systems.
Collapse
Affiliation(s)
- Motoi Oishi
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kazuki Nakatani
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
31
|
Nandu N, Hizir MS, Yigit MV. Systematic Investigation of Two-Dimensional DNA Nanoassemblies for Construction of a Nonspecific Sensor Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14983-14992. [PMID: 29739192 DOI: 10.1021/acs.langmuir.8b00788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have performed a systematic study to analyze the effect of ssDNA length, nucleobase composition, and the type of two-dimensional nanoparticles (2D-nps) on the desorption response of 36 two-dimensional nanoassemblies (2D-NAs) against several proteins. The studies were performed using fluorescently labeled polyA, polyC, and polyT with 23, 18, 12, and 7 nucleotide-long sequences. The results suggest that the ssDNAs with polyC and longer sequences are more resistant to desorption, compared to their counterparts. In addition, 2D-NAs assembled using WS2 were least susceptible to desorption by the proteins tested, whereas nGO 2D-NAs were the most susceptible nanoassemblies. Later, the results of these systematic studies were used to construct a sensor array for discrimination of seven model proteins (BSA, lipase, alkaline phosphatase, acid phosphatase, protease, β-galactosidase, and Cytochrome c). Neither the ssDNAs nor the 2D-nps have any specific interaction with the proteins tested. Only the displacement of the ssDNAs from the 2D-np surface was measured upon the disruption of the existing forces within 2D-NAs. A customized sensor array with five 2D-NAs was developed as a result of a careful screening/filtering process. The sensor array was tested against 200 nM of protein targets, and each protein was discriminated successfully. The results suggest that the systematic studies performed using various ssDNAs and 2D-nps enabled the construction of a sensor array without a bind-and-release sensing mechanism. The studies also demonstrate the significance of systematic investigations in the construction of two-dimensional DNA nanoassemblies for functional studies.
Collapse
Affiliation(s)
- Nidhi Nandu
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Mustafa Salih Hizir
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Mehmet V Yigit
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
- The RNA Institute , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| |
Collapse
|
32
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
33
|
Shahbazi MA, Bauleth-Ramos T, Santos HA. DNA Hydrogel Assemblies: Bridging Synthesis Principles to Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800042] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mohammad-Ali Shahbazi
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; FI-00014 University of Helsinki; Helsinki Finland
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads DK-2800 Kgs Lyngby Denmark
- Department of Pharmaceutical Nanotechnology; School of Pharmacy; Zanjan University of Medical Sciences; 56184-45139 Zanjan Iran
| | - Tomás Bauleth-Ramos
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; FI-00014 University of Helsinki; Helsinki Finland
- Instituto de Investigação e Inovação em Saúde; University of Porto; Rua Alfredo Allen 208 4200-135 Porto Portugal
- Instituto de Engenharia Biomédica; University of Porto; Rua Alfredo Allen 208 4200-135 Porto Portugal
- Instituto Ciências Biomédicas Abel Salazar; University of Porto; Rua Jorge Viterbo 228 4150-180 Porto Portugal
| | - Hélder A. Santos
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; FI-00014 University of Helsinki; Helsinki Finland
- Helsinki Institute of Life Science; FI-00014 University of Helsinki; Helsinki Finland
| |
Collapse
|
34
|
Tuning the Mechanical Properties of a DNA Hydrogel in Three Phases Based on ATP Aptamer. Int J Mol Sci 2018; 19:ijms19061633. [PMID: 29857520 PMCID: PMC6032235 DOI: 10.3390/ijms19061633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 01/25/2023] Open
Abstract
By integrating ATP aptamer into the linker DNA, a novel DNA hydrogel was designed, with mechanical properties that could be tuned into three phases. Based on the unique interaction between ATP and its aptamer, the mechanical strength of the hydrogel increased from 204 Pa to 380 Pa after adding ATP. Furthermore, with the addition of the complementary sequence to the ATP aptamer, the mechanical strength could be increased to 570 Pa.
Collapse
|
35
|
DNA hydrogels formed of bended DNA scaffolds and properties study. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1978-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Abstract
Extracellular matrix (ECM) provides essential supports three dimensionally to the cells in living organs, including mechanical support and signal, nutrition, oxygen, and waste transportation. Thus, using hydrogels to mimic its function has attracted much attention in recent years, especially in tissue engineering, cell biology, and drug screening. However, a hydrogel system that can merit all parameters of the natural ECM is still a challenge. In the past decade, deoxyribonucleic acid (DNA) has arisen as an outstanding building material for the hydrogels, as it has unique properties compared to most synthetic or natural polymers, such as sequence designability, precise recognition, structural rigidity, and minimal toxicity. By simple attachment to polymers as a side chain, DNA has been widely used as cross-links in hydrogel preparation. The formed secondary structures could confer on the hydrogel designable responsiveness, such as response to temperature, pH, metal ions, proteins, DNA, RNA, and small signal molecules like ATP. Moreover, single or multiple DNA restriction enzyme sites could be incorporated into the hydrogels by sequence design and greatly expand the latitude of their responses. Compared with most supramolecular hydrogels, these DNA cross-linked hydrogels could be relatively strong and easily adjustable via sequence variation, but it is noteworthy that these hydrogels still have excellent thixotropic properties and could be easily injected through a needle. In addition, the quick formation of duplex has also enabled the multilayer three-dimensional injection printing of living cells with the hydrogel as matrix. When the matrix is built purely by DNA assembly structures, the hydrogel inherits all the previously described characteristics; however, the long persistence length of DNA structures excluded the small size meshes of the network and made the hydrogel permeable to nutrition for cell proliferation. This unique property greatly expands the cell viability in the three-dimensional matrix to several weeks and also provides an easy way to prepare interpenetrating double network materials. In this Account, we outline the stream of hydrogels based on DNA self-assembly and discuss the mechanism that brings outstanding properties to the materials. Unlike most reported hydrogel systems, the all-in-one character of the DNA hydrogel avoids the "cask effect" in the properties. We believe the hydrogel will greatly benefit cell behavior studies especially in the following aspects: (1) stem cell differentiation can be studied with solely tunable mechanical strength of the matrix; (2) the dynamic nature of the network can allow cell migration through the hydrogel, which will help to build a more realistic model to observe the migration of cancer cells in vivo; (3) combination with rapidly developing three-dimension printing technology, the hydrogel will boost the construction of three-dimensional tissues and artificial organs.
Collapse
Affiliation(s)
- Yu Shao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haoyang Jia
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianyang Cao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Zhou X, Li C, Shao Y, Chen C, Yang Z, Liu D. Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor. Chem Commun (Camb) 2016; 52:10668-71. [DOI: 10.1039/c6cc04724f] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The microscopic conformational transition of an i-motif sequence integrated into a DNA hydrogel network leads to a reversible change in the macroscopic mechanical properties of the hydrogel without changing its initial topological structure.
Collapse
Affiliation(s)
- Xu Zhou
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chuang Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yu Shao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chun Chen
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|