1
|
Lin B, Zhang D, Wang J, Qiao Y, Wang J, Deng Z, Kong L, You D. O-methyltransferase CbzMT catalyzes iterative 3,4-dimethylations for carbazomycin biosynthesis. ENGINEERING MICROBIOLOGY 2024; 4:100150. [PMID: 39629324 PMCID: PMC11610953 DOI: 10.1016/j.engmic.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 12/07/2024]
Abstract
Carbazomycins (1-8) are a subgroup of carbazole derivatives that contain oxygen at the C3 and C4 positions and an unusual asymmetric substitution pattern. Several of these compounds exhibit antifungal and antioxidant activities. To date, no systematic biosynthetic studies have been conducted on carbazomycins. In this study, carbazomycins A and B (1 and 2) were isolated from Streptomyces luteosporeus NRRL 2401 using a one-strain-many-compound (OSMAC)-guided natural product mining screen. A biosynthetic gene cluster (BGC) was identified, and possible biosynthetic pathways for 1 and 2 were proposed. The in vivo genetic manipulation of the O-methyltransferase-encoding gene cbzMT proved indispensable for 1 and 2 biosynthesis. Size exclusion chromatography indicated that CbzMT was active as a dimer. In vitro biochemical assays confirmed that CbzMT could repeatedly act on the hydroxyl groups at C3 and C4, producing monomethylated 2 and dimethylated 1. Monomethylated carbazomycin B (2) is not easily methylated; however, CbzMT seemingly prefers the dimethylation of the dihydroxyl substrate (12) to 1, even with a low conversion efficiency. These findings not only improve the understanding of carbazomycin biosynthesis but also expand the inventory of OMT-catalyzing iterative methylations on different acceptor sites, paving the way for engineering biocatalysts to synthesize new active carbazomycin derivatives.
Collapse
Affiliation(s)
- Baixin Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dashan Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junbo Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongjian Qiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinjin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
2
|
Ward LC, Goulding E, Rigden DJ, Allan FE, Pellis A, Hatton H, Guebitz GM, Salcedo‐Sora JE, Carnell AJ. Engineering a Carboxyl Methyltransferase for the Formation of a Furan-Based Bioplastic Precursor. CHEMSUSCHEM 2023; 16:e202300516. [PMID: 37067062 PMCID: PMC10946451 DOI: 10.1002/cssc.202300516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
FtpM from Aspergillus fumigatus was the first carboxyl methyltransferase reported to catalyse the dimethylation of dicarboxylic acids. Here the creation of mutant R166M that can catalyse the quantitative conversion of bio-derived 2,5-furandicarboxylic acid (FDCA) to its dimethyl ester (FDME), a bioplastics precursor, was reported. Wild type FtpM gave low conversion due to its reduced catalytic efficiency for the second methylation step. An AlphaFold 2 model revealed a highly electropositive active site, due to the presence of 4 arginine residues, postulated to favour the binding of the dicarboxylic acid over the intermediate monoester. The R166M mutation improved both binding and turnover of the monoester to permit near quantitative conversion to the target dimethyl ester product. The mutant also had improved activity for other diacids and a range of monoacids. R166M was incorporated into 2 multienzyme cascades for the synthesis of the bioplastics precursor FDME from bioderived 5-hydroxymethylfurfural (HMF) as well as from poly(ethylene furanoate) (PEF) plastic, demonstrating the potential to recycle waste plastic.
Collapse
Affiliation(s)
- Lucy C. Ward
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - Ellie Goulding
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - Daniel J. Rigden
- Institute of SystemsMolecular and Integrative BiologyUniversity of LiverpoolCrown StreetLiverpoolL69 7ZBUnited Kingdom
| | - Faye E. Allan
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - Alessandro Pellis
- Department of Chemistry and Industrial ChemistryUniversity of Genovavia Dodecaneso 3116146GenovaItaly
| | - Harry Hatton
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - Georg M. Guebitz
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-TullnUniversity of Natural Resources and Life Sciences ViennaKonrad Lorenz Strasse 203430TullnAustria
- Austrian Centre of Industrial BiotechnologyKonrad Lorenz Strasse 203430TullnAustria
| | | | - Andrew J. Carnell
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| |
Collapse
|
3
|
Gao Z, Batool R, Xie W, Huang X, Wang Z. Transcriptome and Metabolome Analysis Reveals the Importance of Amino-Acid Metabolism in Spodoptera Frugiperda Exposed to Spinetoram. INSECTS 2022; 13:852. [PMID: 36135553 PMCID: PMC9504701 DOI: 10.3390/insects13090852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 05/31/2023]
Abstract
Pests are inevitably exposed to sublethal and lethal doses in the agroecosystem following the application of pesticides indispensable to protect food sources. The effect of spinetoram on amino-acid metabolism of fall armyworm, Spodoptera frugiperda (J.E. Smith), was investigated, at the dose of LC10 and LC90, by transcriptome and LC-MS/MS analysis. Using statistics-based analysis of both POS and NEG mode, a total of 715,501 metabolites in S. frugiperda were significantly changed after spinetoram treatment. The enhancement of glucose metabolism provides energy support for detoxification in larvae. The decrease in valine and isoleucine is associated with an increase in leucine, without maintaining the conservation of citric acid in the larvae. The down-regulation of phenylalanine may retard the tricarboxylic acid cycle to produce GTP. The abundance of lysine was decreased in response to spinetoram exposure, which damages the nervous system of the larvae. The abundance of arginine increases and causes non-functional contraction of the insect's muscles, causing the larva to expend excess energy. Tryptophan provides an important substrate for eliminating ROS. The changes in glutamic acid, aspartic acid, and lysine cause damage to the nerve centers of the larvae. The results of transcriptome and LC-MS/MS analysis revealed the effects of pesticide exposure on amino-acid metabolism of S. frugiperda successfully and provide a new overview of the response of insect physio-biochemistry against pesticides.
Collapse
Affiliation(s)
- Zupeng Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weifeng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Engineering Research Center of Natural Enemy Insects/Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Xiaodan Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Engineering Research Center of Natural Enemy Insects/Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Ward LC, McCue HV, Rigden DJ, Kershaw NM, Ashbrook C, Hatton H, Goulding E, Johnson JR, Carnell AJ. Carboxyl Methyltransferase Catalysed Formation of Mono- and Dimethyl Esters under Aqueous Conditions: Application in Cascade Biocatalysis. Angew Chem Int Ed Engl 2022; 61:e202117324. [PMID: 35138660 PMCID: PMC9307002 DOI: 10.1002/anie.202117324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/10/2022]
Abstract
Carboxyl methyltransferase (CMT) enzymes catalyse the biomethylation of carboxylic acids under aqueous conditions and have potential for use in synthetic enzyme cascades. Herein we report that the enzyme FtpM from Aspergillus fumigatus can methylate a broad range of aromatic mono- and dicarboxylic acids in good to excellent conversions. The enzyme shows high regioselectivity on its natural substrate fumaryl-l-tyrosine, trans, trans-muconic acid and a number of the dicarboxylic acids tested. Dicarboxylic acids are generally better substrates than monocarboxylic acids, although some substituents are able to compensate for the absence of a second acid group. For dicarboxylic acids, the second methylation shows strong pH dependency with an optimum at pH 5.5-6. Potential for application in industrial biotechnology was demonstrated in a cascade for the production of a bioplastics precursor (FDME) from bioderived 5-hydroxymethylfurfural (HMF).
Collapse
Affiliation(s)
- Lucy C. Ward
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Hannah V. McCue
- GeneMill, Institute of Integrative BiologyUniversity of LiverpoolCrown StreetLiverpoolL69 7ZBUK
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolCrown StreetLiverpoolL69 7ZBUK
| | - Neil M. Kershaw
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Chloe Ashbrook
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Harry Hatton
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Ellie Goulding
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - James R. Johnson
- GeneMill, Institute of Integrative BiologyUniversity of LiverpoolCrown StreetLiverpoolL69 7ZBUK
| | - Andrew J. Carnell
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
5
|
Ward LC, McCue HV, Rigden DJ, Kershaw NM, Ashbrook C, Hatton H, Goulding E, Johnson JR, Carnell AJ. Carboxyl Methyltransferase Catalysed Formation of Mono‐ and Dimethyl Esters under Aqueous Conditions: Application in Cascade Biocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucy C. Ward
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Hannah V. McCue
- GeneMill, Institute of Integrative Biology University of Liverpool Crown Street Liverpool L69 7ZB UK
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology University of Liverpool Crown Street Liverpool L69 7ZB UK
| | - Neil M. Kershaw
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Chloe Ashbrook
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Harry Hatton
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Ellie Goulding
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - James R. Johnson
- GeneMill, Institute of Integrative Biology University of Liverpool Crown Street Liverpool L69 7ZB UK
| | - Andrew J. Carnell
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
6
|
Lv N, Ma K, Li R, Liang P, Liang P, Gao X. Sublethal and lethal effects of the imidacloprid on the metabolic characteristics based on high-throughput non-targeted metabolomics in Aphis gossypii Glover. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111969. [PMID: 33561773 DOI: 10.1016/j.ecoenv.2021.111969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Sublethal effect considered as an emerging factor to assess the environmental risk of insecticides, which can impact the insects on both physiology and behavior. Lethal exposure can be causing near immediate mortality. Pests are inevitably exposed to sublethal and lethal dose in the agroecosystem following application of pesticides. Insecticides, widely used for the control of insect pests, are irreplaceable in insect pest management. The effects of imidacloprid by the method of high-throughput non-targeted metabolomics was investigated in Aphis gossypii Glover exposed to LC10 and LC90 doses of the imidacloprid, and the control group was treated with the same condition without imidacloprid. Pairwise comparisons showed that 111 metabolites changed significantly, 60 in the LC10 group, and 66 in the LC90 group compared to the control group, while only 16 changes in the LC10 were same with that in LC90 group. Among the changed metabolites, a total of 16 metabolites were identified as potential biomarkers, which represented the most influential pathways including glycolysis and gluconeogenesis, alanine, aspartate, and glutamate metabolism, ascorbate and aldarate metabolism, glutathione metabolism, phenylalanine metabolism, tyrosine metabolism, caffeine metabolism and parkinson's disease (PD), which could account for the sublethal and lethal effects on A. gossypii. These modified metabolic pathways demonstrated that high energy consumption, excitotoxicity and oxidative stress (OS) were appeared in both LC10 and LC90 groups, while PD was detected only in the LC90 group. The results of non-targeted metabolomics revealed the effects of neonicotinoid pesticide exposure on A. gossypii successfully, and provided a deep insight into the influenced physiology by the stress of neonicotinoid pesticide in the insect.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Weng JY, Bu XL, He BB, Cheng Z, Xu J, Da LT, Xu MJ. Rational engineering of amide synthetase enables bioconversion to diverse xiamenmycin derivatives. Chem Commun (Camb) 2019; 55:14840-14843. [DOI: 10.1039/c9cc07826f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To improve the enzyme promiscuity, we engineered XimA by site-directed mutagenesis at a specific position based on our theoretical model.
Collapse
Affiliation(s)
- Jing-Yi Weng
- Key Laboratory of Systems Biomedicine (Ministry of Education)
- Shanghai Centre for Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xu-Liang Bu
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Bei-Bei He
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Zhuo Cheng
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education)
- Shanghai Centre for Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education)
- Shanghai Centre for Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
8
|
Blei F, Fricke J, Wick J, Slot JC, Hoffmeister D. Iterative
l
‐Tryptophan Methylation in
Psilocybe
Evolved by Subdomain Duplication. Chembiochem 2018; 19:2160-2166. [DOI: 10.1002/cbic.201800336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Felix Blei
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute Friedrich-Schiller-Universität Beutenbergstrasse 11a 07745 Jena Germany
| | - Janis Fricke
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute Friedrich-Schiller-Universität Beutenbergstrasse 11a 07745 Jena Germany
| | - Jonas Wick
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute Friedrich-Schiller-Universität Beutenbergstrasse 11a 07745 Jena Germany
| | - Jason C. Slot
- Department of Plant Pathology Ohio State University 2021 Coffey Road Columbus OH 43210 USA
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute Friedrich-Schiller-Universität Beutenbergstrasse 11a 07745 Jena Germany
| |
Collapse
|
9
|
Dolan SK, Bock T, Hering V, Owens RA, Jones GW, Blankenfeldt W, Doyle S. Structural, mechanistic and functional insight into gliotoxin bis-thiomethylation in Aspergillus fumigatus. Open Biol 2017; 7:rsob.160292. [PMID: 28179499 PMCID: PMC5356443 DOI: 10.1098/rsob.160292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/11/2017] [Indexed: 01/02/2023] Open
Abstract
Gliotoxin is an epipolythiodioxopiperazine (ETP) class toxin, contains a disulfide bridge that mediates its toxic effects via redox cycling and is produced by the opportunistic fungal pathogen Aspergillus fumigatus Self-resistance against gliotoxin is effected by the gliotoxin oxidase GliT, and attenuation of gliotoxin biosynthesis is catalysed by gliotoxin S-methyltransferase GtmA. Here we describe the X-ray crystal structures of GtmA-apo (1.66 Å), GtmA complexed to S-adenosylhomocysteine (1.33 Å) and GtmA complexed to S-adenosylmethionine (2.28 Å), providing mechanistic insights into this important biotransformation. We further reveal that simultaneous elimination of the ability of A. fumigatus to dissipate highly reactive dithiol gliotoxin, via deletion of GliT and GtmA, results in the most significant hypersensitivity to exogenous gliotoxin observed to date. Indeed, quantitative proteomic analysis of ΔgliT::ΔgtmA reveals an uncontrolled over-activation of the gli-cluster upon gliotoxin exposure. The data presented herein reveal, for the first time, the extreme risk associated with intracellular dithiol gliotoxin biosynthesis-in the absence of an efficient dismutation capacity. Significantly, a previously concealed protective role for GtmA and functionality of ETP bis-thiomethylation as an ancestral protection strategy against dithiol compounds is now evident.
Collapse
Affiliation(s)
- Stephen K Dolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Tobias Bock
- Helmholtz Centre for Infection Research, Structure and Function of Proteins, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Vanessa Hering
- Helmholtz Centre for Infection Research, Structure and Function of Proteins, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research, Structure and Function of Proteins, Inhoffenstraße 7, 38124 Braunschweig, Germany .,Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|