1
|
Yamaguchi T, Asano Y. Nitrile-synthesizing enzymes and biocatalytic synthesis of volatile nitrile compounds: A review. J Biotechnol 2024; 384:20-28. [PMID: 38395363 DOI: 10.1016/j.jbiotec.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Nitriles (R-CN) comprise a broad group of chemicals industrially produced and used in fine chemicals, pharmaceuticals, and bulk applications, polymer chemistry, solvents, etc. Nitriles are important starting materials for producing carboxylic acids, amides, amines, and several other compounds. In addition, some volatile nitriles have been evaluated for their potential as ingredients in fragrance and flavor formulations. However, many nitrile synthesis methods have drawbacks, such as drastic reaction conditions, limited substrate scope, lack of readily available reagents, poor yields, and long reaction times. In contrast to chemical synthesis, biocatalytic approaches using enzymes can produce nitriles without harsh conditions, such as high temperatures and pressures, or toxic compounds. In this review, we summarize the nitrile-synthesizing enzymes from microorganisms, plants, and animals. Furthermore, we introduce several examples of biocatalytic synthesis of volatile nitrile compounds, particularly those using aldoxime dehydratase.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
2
|
Priya BV, Rao DHS, Chatterjee A, Padhi SK. Hydroxynitrile lyase engineering for promiscuous asymmetric Henry reaction with enhanced conversion, enantioselectivity and catalytic efficiency. Chem Commun (Camb) 2023; 59:12274-12277. [PMID: 37750925 DOI: 10.1039/d3cc02837b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Arabidopsis thaliana hydroxynitrile lyase (AtHNL) engineering has uncovered variants that showed up to 12-fold improved catalytic efficiency than the wild-type towards asymmetric Henry reaction. The AtHNL variants have displayed excellent enantioselectivity, up to >99%, and higher conversion in the synthesis of 13 different (R)-β-nitroalcohols from their corresponding aldehydes. Using cell lysates of Y14M/F179W, we demonstrated a preparative scale synthesis of (R)-1-(4-methoxyphenyl)-2-nitroethanol, a tembamide chiral intermediate, in >99% ee and 52% yield.
Collapse
Affiliation(s)
- Badipatla Vishnu Priya
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| |
Collapse
|
3
|
Vishnu Priya B, Sreenivasa Rao DH, Gilani R, Lata S, Rai N, Akif M, Kumar Padhi S. Enzyme engineering improves catalytic efficiency and enantioselectivity of hydroxynitrile lyase for promiscuous retro-nitroaldolase activity. Bioorg Chem 2022; 120:105594. [PMID: 35007952 DOI: 10.1016/j.bioorg.2021.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 11/02/2022]
Abstract
Protein engineering to improve promiscuous catalytic activity is important for biocatalytic application of enzymes in green synthesis. We uncovered the significance of binding site residues in Arabidopsis thaliana hydroxynitrile lyase (AtHNL) for promiscuous retro-nitroaldolase activity. Engineering of AtHNL has improved enantioselective retro-nitroaldolase activity, a synthetically important biotransformation, for the production of enantiopure β-nitroalcohols having absolute configuration opposite to that of the stereopreference of the HNL. The variant F179A has shown ∼ 12 fold increased selectivity towards the retro-nitroaldol reaction over cyanogenesis, the natural activity of the parent enzyme. Screening of the two saturation libraries of Phe179 and Tyr14 revealed several variants with higher kcat, while F179N showed ∼ 2.4-fold kcat/Km than the native enzyme towards retro-nitroaldol reaction. Variants F179N, F179M, F179W, F179V, F179I, Y14L, and Y14M have shown > 99% ee in the preparation of (S)-2-nitro-1-phenylethanol (NPE) from the racemic substrate, while F179N has shown the E value of 138 vs. 81 by the wild type. Our molecular docking and dynamics simulations (MDS) studies results provided insights into the molecular basis of higher enantioselectivity by the F179N toward the retro-nitroaldolase activity than the other mutants. Binding energy calculations also showed the higher negative binding free energy in the case of F179N-(R)-NPE compared to other complexes that support our experimental low Km by the F179N for NPE. A plausible retro-nitroaldol reaction mechanism was proposed based on the MDS study of enzyme-substrate interaction.
Collapse
Affiliation(s)
- Badipatla Vishnu Priya
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Rubina Gilani
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Surabhi Lata
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Nivedita Rai
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Mohd Akif
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
4
|
Rao DHS, Chatterjee A, Padhi SK. Biocatalytic approaches for enantio and diastereoselective synthesis of chiral β-nitroalcohols. Org Biomol Chem 2021; 19:322-337. [PMID: 33325956 DOI: 10.1039/d0ob02019b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral β-nitroalcohols find significant application in organic synthesis due to the versatile reactivity of hydroxyl and nitro functionalities attached to one or two vicinal asymmetric centers. They are key building blocks of several important pharmaceuticals, bioactive molecules, and fine chemicals. With the growing demand to develop clean and green methods for their synthesis, biocatalytic methods have gained tremendous importance among the existing asymmetric synthesis routes. Over the years, different biocatalytic strategies for the asymmetric synthesis of β-nitroalcohol stereoisomers have been developed. They can be majorly classified as (a) kinetic resolution, (b) dynamic kinetic resolution, (c) Henry reaction, (d) retro-Henry reaction, (e) asymmetric reduction, and (f) enantioselective epoxide ring-opening. This review aims to provide an overview of the above biocatalytic strategies, and their comparison along with future prospects. Essentially, it presents an enzyme-toolbox for the asymmetric synthesis of β-nitroalcohol enantiomers and diastereomers.
Collapse
Affiliation(s)
- D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| | - Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| |
Collapse
|
5
|
Rao DHS, Shivani K, Padhi SK. Immobilized Arabidopsis thaliana Hydroxynitrile Lyase-Catalyzed Retro-Henry Reaction in the Synthesis of (S)-β-Nitroalcohols. Appl Biochem Biotechnol 2020; 193:560-576. [PMID: 33044692 DOI: 10.1007/s12010-020-03442-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/29/2020] [Indexed: 12/01/2022]
Abstract
Enantiopure β-nitroalcohols are versatile intermediates used in the synthesis of important pharmaceuticals and chiral synthons. In this article, immobilized Arabidopsis thaliana HNL (AtHNL)-catalyzed preparation of (S)-β-nitroalcohols from their racemic mixtures via retro-Henry reaction was studied. AtHNL used in biocatalysis was immobilized by physical adsorption in inexpensive celite®545. Under optimized biocatalytic conditions, the total turnover number of the catalyst has improved 2.3-fold for (S)-2-nitro-1-phenylethanol (NPE) synthesis, than free enzyme catalysis. This study reported for the first time celite-AtHNL-catalyzed retro-Henry reaction at low pH. At pH 4.5 and 5.0, 62% ee and 41% conversion, and 97% ee and 42% conversion of (S)-NPE were obtained respectively, while the free enzyme inactivates at pH < 5.0. The increased catalytic efficiency and pH stability of the catalyst could be possibly due to increased stability of AtHNL by immobilization. A dozen of racemic β-nitroalcohols were converted into their corresponding (S)-β-nitroalcohols using this reaction; among them, eight were not tested earlier. The immobilized enzyme has showed broad substrate selectivity in the retro-Henry reaction, and products were obtained up to 98.5% ee.
Collapse
Affiliation(s)
- D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kummari Shivani
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
6
|
Tomescu MS, Davids D, DuPlessis M, Darnhofer B, Birner-Gruenberger R, Archer R, Schwendenwein D, Thallinger G, Winkler M, Rumbold K. High-throughput in-field bioprospecting for cyanogenic plants and hydroxynitrile lyases. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1726895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- M. S. Tomescu
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - D. Davids
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - M. DuPlessis
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - B. Darnhofer
- ACIB GmbH, Graz, Austria
- Institute for Pathology, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed, Graz, Austria
| | - R. Birner-Gruenberger
- ACIB GmbH, Graz, Austria
- Institute for Pathology, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed, Graz, Austria
| | - R. Archer
- National Herbarium, South African National Biodiversity Institute, Pretoria, South Africa
| | | | | | - M. Winkler
- ACIB GmbH, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria
| | - K. Rumbold
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Jangir N, Preeti, Padhi SK. A study on increasing enzymatic stability and activity of Baliospermum montanum hydroxynitrile lyase in biocatalysis. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Building Up Quaternary Stereocenters Through Biocatalyzed Direct Insertion of Carbon Nucleophiles on Ketones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Jangir N, Padhi SK. Immobilized Baliospermum montanum hydroxynitrile lyase catalyzed synthesis of chiral cyanohydrins. Bioorg Chem 2018; 84:32-40. [PMID: 30481644 DOI: 10.1016/j.bioorg.2018.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Hydroxynitrile lyase (HNL) catalyzed enantioselective CC bond formation is an efficient approach to synthesize chiral cyanohydrins which are important building blocks in the synthesis of a number of fine chemicals, agrochemicals and pharmaceuticals. Immobilization of HNL is known to provide robustness, reusability and in some cases also enhances activity and selectivity. We optimized the preparation of immobilization of Baliospermium montanum HNL (BmHNL) by cross linking enzyme aggregate (CLEA) method and characterized it by SEM. Optimization of biocatalytic parameters was performed to obtain highest % conversion and ee of (S)-mandelonitrile from benzaldehyde using CLEA-BmHNL. The optimized reaction parameters were: 20 min of reaction time, 7 U of CLEA-BmHNL, 1.2 mM substrate, and 300 mM citrate buffer pH 4.2, that synthesized (S)-mandelonitrile in ∼99% ee and ∼60% conversion. Addition of organic solvent in CLEA-BmHNL biocatalysis did not improve in % ee or conversion of product unlike other CLEA-HNLs. CLEA-BmHNL could be successfully reused for eight consecutive cycles without loss of conversion or product formation and five cycles with a little loss in enantioselectivity. Eleven different chiral cyanohydrins were synthesized under optimal biocatalytic conditions in up to 99% ee and 59% conversion, however the % conversion and ee varied for different products. CLEA-BmHNL has improved the enantioselectivity of (S)-mandelonitrile synthesis compared to the use of purified BmHNL. Nine aldehydes not tested earlier with BmHNL were converted into their corresponding (S)-cyanohydrins for the first time using CLEA-BmHNL. Among the eleven (S)-cyanohydrins syntheses reported here, eight of them have not been synthesized by any CLEA-HNL. Overall, this study showed preparation, characterization of a stable, robust and recyclable biocatalyst i.e. CLEA-BmHNL and its biocatalytic application in the synthesis of different (S)-aromatic cyanohydrins.
Collapse
Affiliation(s)
- Nisha Jangir
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
10
|
Jangir N, Sangoji D, Padhi SK. Baliospermum montanum hydroxynitrile lyase catalyzed synthesis of chiral cyanohydrins in a biphasic solvent. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Yildirim D, Toprak A, Alagöz D, Tukel SS. Protein-coated microcrystals of Prunus armeniaca hydroxynitrile lyase: an effective and recyclable biocatalyst for synthesis of (R)-mandelonitrile. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0577-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
de Souza ROMA, Miranda LSM, Bornscheuer UT. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry 2017; 23:12040-12063. [DOI: 10.1002/chem.201702235] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Leandro S. M. Miranda
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|