1
|
Sarraf N, Rodriguez KR, Qian L. Modular reconfiguration of DNA origami assemblies using tile displacement. Sci Robot 2023; 8:eadf1511. [PMID: 37099635 DOI: 10.1126/scirobotics.adf1511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The power of natural evolution lies in the adaptability of biological organisms but is constrained by the time scale of genetics and reproduction. Engineeringartificial molecular machines should not only include adaptability as a core feature but also apply it within a larger design space and at a faster time scale. A lesson from engineering electromechanical robots is that modular robots can perform diverse functions through self-reconfiguration, a large-scale form of adaptation. Molecular machines made of modular, reconfigurable components may form the basis for dynamic self-reprogramming in future synthetic cells. To achieve modular reconfiguration in DNA origami assemblies, we previously developed a tile displacement mechanism in which an invader tile replaces another tile in an array with controlled kinetics. Here, we establish design principles for simultaneous reconfigurations in tile assemblies using complex invaders with distinct shapes. We present toehold and branch migration domain configurations that expand the design space of tile displacement reactions by two orders of magnitude. We demonstrate the construction of multitile invaders with fixed and variable sizes and controlled size distributions. We investigate the growth of three-dimensional (3D) barrel structures with variable cross sections and introduce a mechanism for reconfiguring them into 2D structures. Last, we show an example of a sword-shaped assembly transforming into a snake-shaped assembly, illustrating two independent tile displacement reactions occurring concurrently with minimum cross-talk. This work serves as a proof of concept that tile displacement could be a fundamental mechanism for modular reconfiguration robust to temperature and tile concentration.
Collapse
Affiliation(s)
- Namita Sarraf
- Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kellen R Rodriguez
- Business Economics and Management, California Institute of Technology, Pasadena, CA 91125, USA
- Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
- Computer Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lulu Qian
- Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
- Computer Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
2
|
Faheem H, Mathivanan J, Talbot H, Zeghal H, Vangaveti S, Sheng J, Chen AA, Chandrasekaran AR. Toehold clipping: A mechanism for remote control of DNA strand displacement. Nucleic Acids Res 2022; 51:4055-4063. [PMID: 36477864 PMCID: PMC10164547 DOI: 10.1093/nar/gkac1152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The ability to create stimuli-responsive DNA nanostructures has played a prominent role in dynamic DNA nanotechnology. Primary among these is the process of toehold-based strand displacement, where a nucleic acid molecule can act as a trigger to cause conformational changes in custom-designed DNA nanostructures. Here, we add another layer of control to strand displacement reactions through a 'toehold clipping' process. By designing DNA complexes with a photocleavable linker-containing toehold or an RNA toehold, we show that we can use light (UV) or enzyme (ribonuclease) to eliminate the toehold, thus preventing strand displacement reactions. We use molecular dynamics simulations to analyze the structural effects of incorporating a photocleavable linker in DNA complexes. Beyond simple DNA duplexes, we also demonstrate the toehold clipping process in a model DNA nanostructure, by designing a toehold containing double-bundle DNA tetrahedron that disassembles when an invading strand is added, but stays intact after the toehold clipping process even in the presence of the invading strand. This work is an example of combining multiple physical or molecular stimuli to provide additional remote control over DNA nanostructure reconfiguration, advances that hold potential use in biosensing, drug delivery or molecular computation.
Collapse
Affiliation(s)
- Hiba Faheem
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Johnsi Mathivanan
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA.,Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | - Hannah Talbot
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Hana Zeghal
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Jia Sheng
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA.,Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | - Alan A Chen
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA.,Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | | |
Collapse
|
3
|
Tavakoli A, Min JH. Photochemical modifications for DNA/RNA oligonucleotides. RSC Adv 2022; 12:6484-6507. [PMID: 35424630 PMCID: PMC8982246 DOI: 10.1039/d1ra05951c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Light-triggered chemical reactions can provide excellent tools to investigate the fundamental mechanisms important in biology. Light is easily applicable and orthogonal to most cellular events, and its dose and locality can be controlled in tissues and cells. Light-induced conversion of photochemical groups installed on small molecules, proteins, and oligonucleotides can alter their functional states and thus the ensuing biological events. Recently, photochemical control of DNA/RNA structure and function has garnered attention thanks to the rapidly expanding photochemistry used in diverse biological applications. Photoconvertible groups can be incorporated in the backbone, ribose, and nucleobase of an oligonucleotide to undergo various irreversible and reversible light-induced reactions such as cleavage, crosslinking, isomerization, and intramolecular cyclization reactions. In this review, we gather a list of photoconvertible groups used in oligonucleotides and summarize their reaction characteristics, impacts on DNA/RNA thermal stability and structure, as well as their biological applications.
Collapse
Affiliation(s)
- Amirrasoul Tavakoli
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| |
Collapse
|
4
|
Fujimoto K, Hirano A, Watanabe Y, Shimabara A, Nakamura S. The Inhibition Effect of Photo-Cross-Linking between Probes in Photo-Induced Double Duplex Invasion DNA. Chembiochem 2021; 22:3402-3405. [PMID: 34643012 DOI: 10.1002/cbic.202100430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Indexed: 11/09/2022]
Abstract
Double duplex invasion (DDI) DNA is a useful antigene method that inhibits expression of genomic DNA. We succeeded in performing photoinduced-DDI (pDDI) using ultrafast photo-cross-linking. 5-Cyanouracil (CN U) has been used in pDDI to inhibit photo-cross-linking between probes, but its importance has not been clarified. Therefore, in this study, we evaluated the effect of spacer (S) and d-spacer (dS) that exhibit photo-cross-linking ability similar to that of CN U. CN U exhibited the highest pDDI efficiency, and S, dS, and T were not very different. The photo-cross-linking inhibitory effect was better with S and dS than with thymidine (T). Conversely, the thermal stability was significantly lower with S and dS than with T. The results suggest that the pDDI efficiency is determined by the balance between the photo-cross-linking inhibitory effect and the thermal stability, which is the introduction efficiency for double-stranded DNA. Therefore, CN U, which has a photo-cross-linking inhibitory effect and a high Tm value, showed the highest inhibitory efficiency.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ayumu Hirano
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Yasuha Watanabe
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ami Shimabara
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Shigetaka Nakamura
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| |
Collapse
|
5
|
Rangel AE, Hariri AA, Eisenstein M, Soh HT. Engineering Aptamer Switches for Multifunctional Stimulus-Responsive Nanosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003704. [PMID: 33165999 DOI: 10.1002/adma.202003704] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/19/2020] [Indexed: 05/15/2023]
Abstract
Although RNA and DNA are best known for their capacity to encode biological information, it has become increasingly clear over the past few decades that these biomolecules are also capable of performing other complex functions, such as molecular recognition (e.g., aptamers) and catalysis (e.g., ribozymes). Building on these foundations, researchers have begun to exploit the predictable base-pairing properties of RNA and DNA in order to utilize nucleic acids as functional materials that can undergo a molecular "switching" process, performing complex functions such as signaling or controlled payload release in response to external stimuli including light, pH, ligand-binding and other microenvironmental cues. Although this field is still in its infancy, these efforts offer exciting potential for the development of biologically based "smart materials". Herein, ongoing progress in the use of nucleic acids as an externally controllable switching material is reviewed. The diverse range of mechanisms that can trigger a stimulus response, and strategies for engineering those functionalities into nucleic acid materials are explored. Finally, recent progress is discussed in incorporating aptamer switches into more complex synthetic nucleic acid-based nanostructures and functionalized smart materials.
Collapse
Affiliation(s)
- Alexandra E Rangel
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Amani A Hariri
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
6
|
Abstract
In recent years, a diverse set of mechanisms have been developed that allow DNA strands with specific sequences to sense information in their environment and to control material assembly, disassembly, and reconfiguration. These sequences could serve as the inputs and outputs for DNA computing circuits, enabling DNA circuits to act as chemical information processors to program complex behavior in chemical and material systems. This review describes processes that can be sensed and controlled within such a paradigm. Specifically, there are interfaces that can release strands of DNA in response to chemical signals, wavelengths of light, pH, or electrical signals, as well as DNA strands that can direct the self-assembly and dynamic reconfiguration of DNA nanostructures, regulate particle assemblies, control encapsulation, and manipulate materials including DNA crystals, hydrogels, and vesicles. These interfaces have the potential to enable chemical circuits to exert algorithmic control over responsive materials, which may ultimately lead to the development of materials that grow, heal, and interact dynamically with their environments.
Collapse
Affiliation(s)
- Dominic Scalise
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
7
|
Fujimoto K, Hashimoto M, Watanabe N, Nakamura S. RNA fluorescence in situ hybridization hybridisation using photo-cross-linkable beacon probes containing pyranocarbazole in living E. coli. Bioorg Med Chem Lett 2019; 29:2173-2177. [DOI: 10.1016/j.bmcl.2019.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/25/2022]
|
8
|
Fujimoto K, Yang-Chun H, Nakamura S. Strong Inhibitory Effects of Antisense Probes on Gene Expression through Ultrafast RNA Photocrosslinking. Chem Asian J 2019; 14:1912-1916. [PMID: 30806028 DOI: 10.1002/asia.201801917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/22/2019] [Indexed: 11/06/2022]
Abstract
We have reported the photochemical regulation of the intracellular antisense effect of antisense probes containing a photo-responsive artificial nucleic acid, 3-cyanovinylcarbazole nucleoside (CNV K). Here we focus on the importance of the photocrosslinking rate on the inhibitory effect on gene expression using photocrosslinkable antisense probes (pcASOs). The inhibitory effect of pcASOs on GFP gene expression was dependent on the photocrosslinking rate of 3-cyanovinylcarbazole with d-threoninol (CNV D), CNV K, or psoralen. The ultrafast RNA photocrosslinking induced the formation of a thermally irreversible covalent bond between pcASOs and the target RNA. These ASOs strongly inhibited gene expression only when the photocrosslinking rate was faster than the random walk of branch migration. In addition, pcASOs containing CNV D or CNV K targeted the RNAs with secondary structures. These results indicate the regulatory effect of photocrosslinker and photoirradiation energy using pcASOs on the gene expression level.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Hung Yang-Chun
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Shigetaka Nakamura
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
9
|
Sethi S, Honda N, Wan L, Nakamura S, Fujimoto K. Ultra-acceleration of Photochemical Cytosine Deamination by Using a 5'-Phosphate-Substituted Oligodeoxyribonucleotide Probe Containing a 3-Cyanovinylcarbazole Nucleotide at Its 5'-End. Chembiochem 2018; 19:2257-2261. [PMID: 30195263 DOI: 10.1002/cbic.201800384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 01/18/2023]
Abstract
Genes are the blueprints for the architectures of living organisms, providing the backbone of the information required for formation of proteins. Changes in genes lead to disorders, and these disorders could be rectified by reversing the mutations that caused them. Photochemical methods currently in use for site-directed mutagenesis employ the photoactive 3-cyanovinylcarbazole (CNV K) nucleotide incorporated in the oligodeoxyribonucleotide (ODN) backbone. The major drawback of this method, the requirement for high temperature, has been addressed, and deamination has previously been achieved at 37 °C but with low efficiency. Here, efficient deamination has been accomplished under physiological conditions by using a short complementary photoactive ODN with a 5'-phosphate group in the -1 position with respect to the target cytosine. It is hypothesized that the free phosphate group affects the microenvironment around the target cytosine by activating the incoming nucleophile through hydrogen bonding with the water molecule, thus facilitating nucleophilic attack on the cytosine C-4 carbon. The degree of deamination observed in this technique is high and the effect of the phosphate group is to accelerate the deamination reaction.
Collapse
Affiliation(s)
- Siddhant Sethi
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Nozomi Honda
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Licheng Wan
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Shigetaka Nakamura
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Kenzo Fujimoto
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
10
|
Nakamura S, Takashima Y, Fujimoto K. Multiplexed detection of nucleic acids using 19F NMR chemical shift changes based on DNA photo-cross-linking of 3-vinylcarbazole derivatives. Org Biomol Chem 2018; 16:891-894. [PMID: 29340411 DOI: 10.1039/c7ob03008h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detection methodology for nucleic acids is a useful tool for the analysis of biological systems and diagnosis of diseases. We demonstrated the feasibility of the detection of any nucleic acids based on large chemical shifts via ultrafast DNA photo-cross-linking and the effects of substitution by 3-vinylcarbazole derivatives. These chemical shifts enable the sequence-specific detection of any strand using hybridization chain reaction.
Collapse
Affiliation(s)
- Shigetaka Nakamura
- Department of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahi-dai, Nomi, Ishikawa 923-1292, Japan.
| | | | | |
Collapse
|
11
|
Hollenstein M. DNA Synthesis by Primer Exchange Reaction Cascades. Chembiochem 2018; 19:422-424. [PMID: 29239531 DOI: 10.1002/cbic.201700639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 12/15/2022]
Abstract
Swap and extend: The autonomous synthesis of single-stranded DNA molecules of arbitrary size and sequence composition can easily be achieved by primer exchange reaction (PER) cascades, in which the sequential polymerase-mediated extension of DNA primers is guided by catalytic hairpins. This highlight illustrates the potential of this method for applications in DNA nanotechnology.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|