1
|
Gupta SS, Hamza Kh M, Sones CL, Zhang X, Sivaraman GK. The CRISPR/Cas system as an antimicrobial resistance strategy in aquatic ecosystems. Funct Integr Genomics 2024; 24:110. [PMID: 38806846 DOI: 10.1007/s10142-024-01362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/30/2024]
Abstract
With the growing population, demand for food has dramatically increased, and fisheries, including aquaculture, are expected to play an essential role in sustaining demand with adequate quantities of protein and essential vitamin supplements, employment generation, and GDP growth. Unfortunately, the incidence of emerging/re-emerging AMR pathogens annually occurs because of anthropogenic activities and the frequent use of antibiotics in aquaculture. These AMR pathogens include the WHO's top 6 prioritized ESKAPE pathogens (nosocomial pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), extended-spectrum beta lactases (ESBLs) and carbapenemase-producing E. coli, which pose major challenges to the biomagnification of both nonnative and native antibiotic-resistant bacteria in capture and cultured fishes. Although implementing the rational use of antibiotics represents a promising mitigation measure, this approach is practically impossible due to the lack of awareness among farmers about the interplay between antimicrobial use and the emergence of antimicrobial resistance (AMR). Nevertheless, to eradicate these 'superbugs,' CRISPR/Cas (clustered regularly interspersed short palindromic repeats/CRISPR associate protein) has turned out to be a novel approach owing to its ability to perform precise site-directed targeting/knockdown/reversal of specific antimicrobial resistance genes in vitro and to distinguish AMR-resistant bacteria from a plethora of commensal aquatic bacteria. Along with highlighting the importance of virulent multidrug resistance genes in bacteria, this article aims to provide a holistic picture of CRISPR/Cas9-mediated genome editing for combating antimicrobial-resistant bacteria isolated from various aquaculture and marine systems, as well as insights into different types of CRISPR/Cas systems, delivery methods, and challenges associated with developing CRISPR/Cas9 antimicrobial agents.
Collapse
Affiliation(s)
- Sobin Sonu Gupta
- Founder & CEO at Times of Biotech, Navelim Bicholim, Goa-403505, India
- Microbiology, Fermentation & Biotechnology Division, ICAR- Central Institute of Fisheries Technology, Cochin-29, Kerala, India
| | - Muneeb Hamza Kh
- Microbiology, Fermentation & Biotechnology Division, ICAR- Central Institute of Fisheries Technology, Cochin-29, Kerala, India
| | - Collin L Sones
- Founder and CTO of Highfield Diagnostics, Zepler Institute of Photonics and Nanoelectronics, University of Southampton, SO17 1BJ, Southampton, UK
| | - Xunli Zhang
- School of Engineering & Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - Gopalan Krishnan Sivaraman
- Microbiology, Fermentation & Biotechnology Division, ICAR- Central Institute of Fisheries Technology, Cochin-29, Kerala, India.
| |
Collapse
|
2
|
Klumbys E, Xu W, Koduru L, Heng E, Wei Y, Wong FT, Zhao H, Ang EL. Discovery, characterization, and engineering of an advantageous Streptomyces host for heterologous expression of natural product biosynthetic gene clusters. Microb Cell Fact 2024; 23:149. [PMID: 38790014 PMCID: PMC11127301 DOI: 10.1186/s12934-024-02416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited. In our search for a valuable addition to the heterologous host panel, we identified the strain Streptomyces sp. A4420, which exhibited rapid initial growth and a high metabolic capacity, prompting further exploration of its potential. RESULTS We engineered a polyketide-focused chassis strain based on Streptomyces sp. A4420 (CH strain) by deleting 9 native polyketide BGCs. The resulting metabolically simplified organism exhibited consistent sporulation and growth, surpassing the performance of most existing Streptomyces based chassis strains in standard liquid growth media. Four distinct polyketide BGCs were chosen and expressed in various heterologous hosts, including the Streptomyces sp. A4420 wild-type and CH strains, alongside Streptomyces coelicolor M1152, Streptomyces lividans TK24, Streptomyces albus J1074, and Streptomyces venezuelae NRRL B-65442. Remarkably, only the Streptomyces sp. A4420 CH strain demonstrated the capability to produce all metabolites under every condition outperforming its parental strain and other tested organisms. To enhance visualization and comparison of the tested strains, we developed a matrix-like analysis involving 15 parameters. This comprehensive analysis unequivocally illustrated the significant potential of the new strain to become a popular heterologous host. CONCLUSION Our engineered Streptomyces sp. A4420 CH strain exhibits promising attributes for the heterologous expression of natural products with a focus on polyketides, offering an alternative choice in the arsenal of heterologous production strains. As genomics and cloning strategies progress, establishment of a diverse panel of heterologous production hosts will be crucial for expediting the discovery and production of medically relevant natural products derived from Streptomyces.
Collapse
Affiliation(s)
- Evaldas Klumbys
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Wei Xu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Lokanand Koduru
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Elena Heng
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Fong Tian Wong
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore.
| |
Collapse
|
3
|
Lee Y, Hwang S, Kim W, Kim JH, Palsson BO, Cho BK. CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces. J Ind Microbiol Biotechnol 2024; 51:kuae009. [PMID: 38439699 PMCID: PMC10949845 DOI: 10.1093/jimb/kuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/02/2024] [Indexed: 03/06/2024]
Abstract
The demand for discovering novel microbial secondary metabolites is growing to address the limitations in bioactivities such as antibacterial, antifungal, anticancer, anthelmintic, and immunosuppressive functions. Among microbes, the genus Streptomyces holds particular significance for secondary metabolite discovery. Each Streptomyces species typically encodes approximately 30 secondary metabolite biosynthetic gene clusters (smBGCs) within its genome, which are mostly uncharacterized in terms of their products and bioactivities. The development of next-generation sequencing has enabled the identification of a large number of potent smBGCs for novel secondary metabolites that are imbalanced in number compared with discovered secondary metabolites. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has revolutionized the translation of enormous genomic potential into the discovery of secondary metabolites as the most efficient genetic engineering tool for Streptomyces. In this review, the current status of CRISPR/Cas applications in Streptomyces is summarized, with particular focus on the identification of secondary metabolite biosynthesis gene clusters and their potential applications.This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production. ONE-SENTENCE SUMMARY This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.
Collapse
Affiliation(s)
- Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate school of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
5
|
de Lima Júnior AA, de Sousa EC, de Oliveira THB, de Santana RCF, da Silva SKR, Coelho LCBB. Genus Streptomyces: Recent advances for biotechnological purposes. Biotechnol Appl Biochem 2023; 70:1504-1517. [PMID: 36924211 DOI: 10.1002/bab.2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Actinomycetes are a distinct group of filamentous bacteria. The Streptomyces genus within this group has been extensively studied over the years, with substantial contributions to society and science. This genus is known for its antimicrobial production, as well as antitumor, biopesticide, and immunomodulatory properties. Therefore, the extraordinary plasticity of the Streptomyces genus has inspired new research techniques. The newest way of exploring Streptomyces has comprised the discovery of new natural metabolites and the application of emerging tools such as CRISPR technology in drug discovery. In this narrative review, we explore relevant published literature concerning the ongoing novelties of the Streptomyces genus.
Collapse
Affiliation(s)
- Apolonio Alves de Lima Júnior
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | - Thales Henrique Barbosa de Oliveira
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | | | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Modern Trends in Natural Antibiotic Discovery. Life (Basel) 2023; 13:1073. [PMID: 37240718 PMCID: PMC10221674 DOI: 10.3390/life13051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Natural scaffolds remain an important basis for drug development. Therefore, approaches to natural bioactive compound discovery attract significant attention. In this account, we summarize modern and emerging trends in the screening and identification of natural antibiotics. The methods are divided into three large groups: approaches based on microbiology, chemistry, and molecular biology. The scientific potential of the methods is illustrated with the most prominent and recent results.
Collapse
Affiliation(s)
- Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
| |
Collapse
|
7
|
El-Hawary SS, Hassan MHA, Hudhud AO, Abdelmohsen UR, Mohammed R. Elicitation for activation of the actinomycete genome's cryptic secondary metabolite gene clusters. RSC Adv 2023; 13:5778-5795. [PMID: 36816076 PMCID: PMC9932869 DOI: 10.1039/d2ra08222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
This review summarizes the recent advances in the elicitation approaches used to activate the actinomycete genome's cryptic secondary metabolite gene clusters and shows the diversity of natural products obtained by various elicitation methods up to June 2022, such as co-cultivation of actinomycetes with actinomycetes, other non-actinomycete bacteria, fungi, cell-derived components, and/or algae. Chemical elicitation and molecular elicitation as transcription factor decoys, engineering regulatory genes, the promoter replacement strategy, global regulatory genes, and reporter-guided mutant selection were also reported. For researchers interested in this field, this review serves as a valuable resource for the latest studies and references.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo Egypt
| | - Marwa H A Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
| | - Ahmed O Hudhud
- Department of Pharmacognosy, Faculty of Pharmacy, Merit University Sohag 82511 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
8
|
Kim HM, Hong Y, Chen J. A Decade of CRISPR-Cas Gnome Editing in C. elegans. Int J Mol Sci 2022; 23:ijms232415863. [PMID: 36555505 PMCID: PMC9781986 DOI: 10.3390/ijms232415863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
CRISPR-Cas allows us to introduce desired genome editing, including mutations, epitopes, and deletions, with unprecedented efficiency. The development of CRISPR-Cas has progressed to such an extent that it is now applicable in various fields, with the help of model organisms. C. elegans is one of the pioneering animals in which numerous CRISPR-Cas strategies have been rapidly established over the past decade. Ironically, the emergence of numerous methods makes the choice of the correct method difficult. Choosing an appropriate selection or screening approach is the first step in planning a genome modification. This report summarizes the key features and applications of CRISPR-Cas methods using C. elegans, illustrating key strategies. Our overview of significant advances in CRISPR-Cas will help readers understand the current advances in genome editing and navigate various methods of CRISPR-Cas genome editing.
Collapse
|
9
|
Fang JL, Gao WL, Xu WF, Lyu ZY, Ma L, Luo S, Chen XA, Mao XM, Li YQ. m4C DNA methylation regulates biosynthesis of daptomycin in Streptomyces roseosporus L30. Synth Syst Biotechnol 2022; 7:1013-1023. [PMID: 35801092 PMCID: PMC9240718 DOI: 10.1016/j.synbio.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jiao-Le Fang
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Wen-Li Gao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Wei-Feng Xu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Zhong-Yuan Lyu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Lie Ma
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Shuai Luo
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
- Corresponding author. Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| |
Collapse
|
10
|
Kanoh N. Naturally Occurring Polyene Macrolactams as Pluripotent Stem Molecules: Their Chemistry and Biology, and Efforts toward the Creation of Polyene Macrolactam-based Induced Pluripotent Small Molecules. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences, and Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
11
|
A Study of Type II ɛ-PL Degrading Enzyme (pldII) in Streptomyces albulus through the CRISPRi System. Int J Mol Sci 2022; 23:ijms23126691. [PMID: 35743134 PMCID: PMC9223678 DOI: 10.3390/ijms23126691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
ε-Poly-L-lysine (ε-PL) is a widely used antibacterial peptide polymerized of 25–35 L-lysine residues. The antibacterial effect of ε-PL is closely related to the polymerization degree. However, the mechanism of ε-PL degradation in S. albulus remains unclear. This study utilized the integrative plasmid pSET152-based CRISPRi system to transcriptionally repress the ε-PL degrading enzyme (pldII). The expression of pldII is regulated by changing the recognition site of dCas9. Through the ε-PL bacteriostatic experiments of repression strains, it was found that the repression of pldII improves the antibacterial effect of the ε-PL product. The consecutive MALDI-TOF-MS results confirmed that the molecular weight distribution of the ε-PL was changed after repression. The repression strain S1 showed a particular peak with a polymerization degree of 44, and other repression strains also generated ε-PL with a polymerization degree of over 40. Furthermore, the homology modeling and substrate docking of pldII, a typical endo-type metallopeptidase, were performed to resolve the degradation mechanism of ε-PL in S. albulus. The hydrolysis of ε-PL within pldII, initiated from the N-terminus by two amino acid-binding residues, Thr194 and Glu281, led to varying levels of polymerization of ε-PL.
Collapse
|
12
|
Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar Drugs 2022; 20:md20060360. [PMID: 35736163 PMCID: PMC9230918 DOI: 10.3390/md20060360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades (covering 1972 to 2022), astounding progress has been made in the elucidation of structures, bioactivities and biosynthesis of polyene macrolactams (PMLs), but they have only been partially summarized. PMLs possess a wide range of biological activities, particularly distinctive fungal inhibitory abilities, which render them a promising drug candidate. Moreover, the unique biosynthetic pathways including β-amino acid initiation and pericyclic reactions were presented in PMLs, leading to more attention from inside and outside the natural products community. According to current summation, in this review, the chem- and bio-diversity of PMLs from marine and terrestrial sources are considerably rich. A systematic, critical and comprehensive overview is in great need. This review described the PMLs’ general structural features, production strategies, biosynthetic pathways and the mechanisms of bioactivities. The challenges and opportunities for the research of PMLs are also discussed.
Collapse
|
13
|
Liang M, Liu L, Xu F, Zeng X, Wang R, Yang J, Wang W, Karthik L, Liu J, Yang Z, Zhu G, Wang S, Bai L, Tong Y, Liu X, Wu M, Zhang LX, Tan GY. Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach. Nucleic Acids Res 2022; 50:3581-3592. [PMID: 35323947 PMCID: PMC8989516 DOI: 10.1093/nar/gkac181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/12/2022] Open
Abstract
Direct cloning of biosynthetic gene clusters (BGCs) from microbial genomes facilitates natural product-based drug discovery. Here, by combining Cas12a and the advanced features of bacterial artificial chromosome library construction, we developed a fast yet efficient in vitro platform for directly capturing large BGCs, named CAT-FISHING (CRISPR/Cas12a-mediated fast direct biosynthetic gene cluster cloning). As demonstrations, several large BGCs from different actinomycetal genomic DNA samples were efficiently captured by CAT-FISHING, the largest of which was 145 kb with 75% GC content. Furthermore, the directly cloned, 110 kb long, cryptic polyketide encoding BGC from Micromonospora sp. 181 was then heterologously expressed in a Streptomyces chassis. It turned out to be a new macrolactam compound, marinolactam A, which showed promising anticancer activity. Our results indicate that CAT-FISHING is a powerful method for complicated BGC cloning, and we believe that it would be an important asset to the entire community of natural product-based drug discovery.
Collapse
Affiliation(s)
- Mindong Liang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Leshi Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Xu
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoqian Zeng
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ruijun Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Jinling Yang
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Loganathan Karthik
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiakun Liu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shuliu Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaojun Tong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Xin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Xiao S, Deng Z, Gao J. CRISPR/Cas-based strategy for unearthing hidden chemical space from microbial genomes. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
In Silico/In Vitro Strategies Leading to the Discovery of New Nonribosomal Peptide and Polyketide Antibiotics Active against Human Pathogens. Microorganisms 2021; 9:microorganisms9112297. [PMID: 34835423 PMCID: PMC8625390 DOI: 10.3390/microorganisms9112297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are majorly important molecules for human health. Following the golden age of antibiotic discovery, a period of decline ensued, characterised by the rediscovery of the same molecules. At the same time, new culture techniques and high-throughput sequencing enabled the discovery of new microorganisms that represent a potential source of interesting new antimicrobial substances to explore. The aim of this review is to present recently discovered nonribosomal peptide (NRP) and polyketide (PK) molecules with antimicrobial activity against human pathogens. We highlight the different in silico/in vitro strategies and approaches that led to their discovery. As a result of technological progress and a better understanding of the NRP and PK synthesis mechanisms, these new antibiotic compounds provide an additional option in human medical treatment and a potential way out of the impasse of antibiotic resistance.
Collapse
|
16
|
Um S, Guo H, Thiengmag S, Benndorf R, Murphy R, Rischer M, Braga D, Poulsen M, de Beer ZW, Lackner G, Beemelmanns C. Comparative Genomic and Metabolic Analysis of Streptomyces sp. RB110 Morphotypes Illuminates Genomic Rearrangements and Formation of a New 46-Membered Antimicrobial Macrolide. ACS Chem Biol 2021; 16:1482-1492. [PMID: 34275291 DOI: 10.1021/acschembio.1c00357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Morphotype switches frequently occur in Actinobacteria and are often associated with disparate natural product production. Here, we report on differences in the secondary metabolomes of two morphotypes of a Streptomyces species, including the discovery of a novel antimicrobial glycosylated macrolide, which we named termidomycin A. While exhibiting an unusual 46-member polyene backbone, termidomycin A (1) shares structural features with the clinically important antifungal agents amphotericin B and nystatin A1. Genomic analyses revealed a biosynthetic gene cluster encoding for a putative giant type I polyketide synthase (PKS), whose domain structure allowed us to propose the relative configuration of the 46-member macrolide. The architecture of the biosynthetic gene cluster was different in both morphotypes, thus leading to diversification of the product spectrum. Given the high frequency of genomic rearrangements in Streptomycetes, the metabolic analysis of distinct morphotypes as exemplified in this study is a promising approach for the discovery of bioactive natural products and pathways of diversification.
Collapse
Affiliation(s)
- Soohyun Um
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sirinthra Thiengmag
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - René Benndorf
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Robert Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Maja Rischer
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Daniel Braga
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Z. Wilhelm de Beer
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Gerald Lackner
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| |
Collapse
|
17
|
Singh TA, Passari AK, Jajoo A, Bhasin S, Gupta VK, Hashem A, Alqarawi AA, Abd Allah EF. Tapping Into Actinobacterial Genomes for Natural Product Discovery. Front Microbiol 2021; 12:655620. [PMID: 34239507 PMCID: PMC8258257 DOI: 10.3389/fmicb.2021.655620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
The presence of secondary metabolite biosynthetic gene clusters (BGCs) makes actinobacteria well-known producers of diverse metabolites. These ubiquitous microbes are extensively exploited for their ability to synthesize diverse secondary metabolites. The extent of their ability to synthesize various molecules is yet to be evaluated. Current advancements in genome sequencing, metabolomics, and bioinformatics have provided a plethora of information about the mechanism of synthesis of these bioactive molecules. Accessing the biosynthetic gene cluster responsible for the production of metabolites has always been a challenging assignment. The genomic approach developments have opened a new gateway for examining and manipulating novel antibiotic gene clusters. These advancements have now developed a better understanding of actinobacterial physiology and their genetic regulation for the prolific production of natural products. These new approaches provide a unique opportunity to discover novel bioactive compounds that might replenish antibiotics’ exhausted stock and counter the microbes’ resistance crisis.
Collapse
Affiliation(s)
- Tanim Arpit Singh
- Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore, India.,School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Ajit Kumar Passari
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Sheetal Bhasin
- Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center and Center for Safe and Improved Food, Scotland's Rural College (SRUC), SRUC Barony Campus, Dumfries, United Kingdom
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Mycology and Plant Disease Survey, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Abdulaziz A Alqarawi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 2021; 49:107759. [PMID: 33930523 DOI: 10.1016/j.biotechadv.2021.107759] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Microbial-derived natural products (NPs) and their derivative products are of great importance and used widely in many fields, especially in pharmaceutical industries. However, there is an immediate need to establish innovative approaches, strategies, and techniques to discover new NPs with novel or enhanced biological properties, due to the less productivity and higher cost on traditional drug discovery pipelines from natural bioresources. Revealing of untapped microbial cryptic biosynthetic gene clusters (BGCs) using DNA sequencing technology and bioinformatics tools makes genome mining possible for NP discovery from microorganisms. Meanwhile, new approaches and strategies in the area of synthetic biology offer great potentials for generation of new NPs by engineering or creating synthetic systems with improved and desired functions. Development of approaches, strategies and tools in synthetic biology can facilitate not only exploration and enhancement in supply, and also in the structural diversification of NPs. Here, we discussed recent advances in synthetic biology-inspired strategies, including bioinformatics and genetic engineering tools and approaches for identification, cloning, editing/refactoring of candidate biosynthetic pathways, construction of heterologous expression hosts, fitness optimization between target pathways and hosts and detection of NP production.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
19
|
Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, Kuca K, Tripathi V. Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. Int J Mol Sci 2021; 22:3327. [PMID: 33805113 PMCID: PMC8036902 DOI: 10.3390/ijms22073327] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
According to Darwin's theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR-Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR-Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR-Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR-Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.
Collapse
Affiliation(s)
- Sweta Nidhi
- Department of Genomics and Bioinformatics, Aix-Marseille University, 13007 Marseille, France;
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India;
| | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| | - George Thomas
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| |
Collapse
|
20
|
Liu S, Wang T, Lu Q, Li F, Wu G, Jiang Z, Habden X, Liu L, Zhang X, Lukianov DA, Osterman IA, Sergiev PV, Dontsova OA, Sun C. Bioprospecting of Soil-Derived Actinobacteria Along the Alar-Hotan Desert Highway in the Taklamakan Desert. Front Microbiol 2021; 12:604999. [PMID: 33790875 PMCID: PMC8005632 DOI: 10.3389/fmicb.2021.604999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/22/2021] [Indexed: 02/04/2023] Open
Abstract
Taklamakan desert is known as the largest dunefield in China and as the second largest shifting sand desert in the world. Although with long history and glorious culture, the Taklamakan desert remains largely unexplored and numerous microorganisms have not been harvested in culture or taxonomically identified yet. The main objective of this study is to explore the diversity, novelty, and pharmacological potential of the cultivable actinomycetes from soil samples at various sites along the Alar-Hotan desert highway in the Taklamakan desert. A total of 590 actinobacterial strains were recovered by the culture-dependent approach. Phylogenetic analysis based on 16S ribosomal RNA (rRNA) gene sequences unveiled a significant level of actinobacterial diversity with 55 genera distributed in 27 families of 12 orders. Thirty-six strains showed relatively low 16S rRNA similarities (<98.65%) with validly described species, among which four strains had already been characterized as novel taxa by our previous research. One hundred and forty-six actinobacterial isolates were selected as representatives to evaluate the antibacterial activities and mechanism of action by the paper-disk diffusion method and a double fluorescent protein reporter "pDualrep2" system, respectively. A total of 61 isolates exhibited antagonistic activity against the tested "ESKAPE" pathogens, among which seven strains could produce bioactive metabolites either to be able to block translation machinery or to induce SOS-response in the pDualrep2 system. Notably, Saccharothrix sp. 16Sb2-4, harboring a promising antibacterial potential with the mechanism of interfering with protein translation, was analyzed in detail to gain deeper insights into its bioactive metabolites. Through ultra-performance liquid chromatography (UPLC)-quadrupole time-of-flight (QToF)-MS/MS based molecular networking analysis and databases identification, four families of compounds (1-16) were putatively identified. Subsequent bioassay-guided separation resulted in purification of four 16-membered macrolide antibiotics, aldgamycin H (8), aldgamycin K (9), aldgamycin G (10), and swalpamycin B (11), and their structures were elucidated by HR-electrospray ionization source (ESI)-MS and NMR spectroscopy. All compounds 8-11 displayed antibacterial activities by inhibiting protein synthesis in the pDualrep2 system. In conclusion, this work demonstrates that Taklamakan desert is a potentially unique reservoir of versatile actinobacteria, which can be a promising source for discovery of novel species and diverse bioactive compounds.
Collapse
Affiliation(s)
- Shaowei Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ting Wang
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinpei Lu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feina Li
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gang Wu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhongke Jiang
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xugela Habden
- College of Life Science, Xinjiang Normal University, Urumchi, China
| | - Lin Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaolin Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dmitry A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Alvarez R, de Lera AR. Natural polyenic macrolactams and polycyclic derivatives generated by transannular pericyclic reactions: optimized biogenesis challenging chemical synthesis. Nat Prod Rep 2020; 38:1136-1220. [PMID: 33283831 DOI: 10.1039/d0np00050g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering from 1992 to the end of 2020-11-20.Genetically-encoded polyenic macrolactams, which are constructed by Nature using hybrid polyketide synthase/nonribosomal peptide synthase (PKSs/NRPSs) assembly lines, are part of the large collection of natural products isolated from bacteria. Activation of cryptic (i.e., silent) gene clusters in these microorganisms has more recently allowed to generate and eventually isolate additional members of the family. Having two unsaturated fragments separated by short saturated chains, the primary macrolactam is posited to undergo transannular reactions and further rearrangements thus leading to the generation of a structurally diverse collection of polycyclic (natural) products and oxidized derivatives. The review will cover the challenges that scientists face on the isolation of these unstable compounds from the cultures of the producing microorganisms, their structural characterization, biological activities, optimized biogenetic routes, as well as the skeletal rearrangements of the primary structures of the natural macrolactams derived from pericyclic reactions of the polyenic fragments. The efforts of the synthetic chemists to emulate Nature on the successful generation and structural confirmation of these natural products will also be reported.
Collapse
Affiliation(s)
- Rosana Alvarez
- Department of Organic Chemistry and Center for Biomedical Research (CINBIO), IBIV, Universidade de Vigo, 36310 Vigo, Spain.
| | | |
Collapse
|
22
|
Zhu JW, Zhang SJ, Wang WG, Jiang H. Strategies for Discovering New Antibiotics from Bacteria in the Post-Genomic Era. Curr Microbiol 2020; 77:3213-3223. [PMID: 32929578 DOI: 10.1007/s00284-020-02197-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
New antibiotics are urgently required in clinical treatment and agriculture with the development of antimicrobial resistance. However, products discovered by repeating previous strategies are either not antibiotics or already known antibiotics. There is a growing demand for efficient strategies to discover new antibiotics. With the continuous improvement of gene sequencing technology and genomic data, some mining strategies have emerged. These strategies are expected to alleviate the current dilemma of antibiotics. In this review, we discuss the recent advances in discovery of bacterial antibiotics from the following aspects: activation of silent gene clusters, genome mining and metagenome mining. In the future, we envision the discovery of natural antibiotic will be accelerated by the combination of these strategies.
Collapse
Affiliation(s)
- Jia-Wei Zhu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China
| | - Si-Jia Zhang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China
| | - Wen-Guang Wang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China
| | - Hui Jiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China.
| |
Collapse
|
23
|
Tao K, Ye T, Cao M, Meng X, Li Y, Wang H, Feng Z. Salumycin, a New Pyrazolequinone from a Streptomyces albus J1074 Mutant Strain. Molecules 2020; 25:molecules25184098. [PMID: 32911655 PMCID: PMC7570766 DOI: 10.3390/molecules25184098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
Heterocyclic natural products with various bioactivities play significant roles in pharmaceuticals. Here, we isolated a heterocyclic compound salumycin (1) from a Streptomyces albus J1074 mutant strain. The structure of (1) was elucidated via single-crystal X-ray diffraction, mass spectrometry (MS), fourier transform infrared spectrometer (FTIR), and nuclear magnetic resonance (NMR) data analysis. Salumycin (1) contained a novel pyrazolequinone ring, which had never been previously reported in a natural product. Salumycin (1) exhibited moderate 2,2'-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity (EC50 = 46.3 ± 2.2 μM) compared with tert-butylhydroquinone (EC50 = 4.7 ± 0.3 μM). This study provides a new example of discovering novel natural products from bacteria.
Collapse
Affiliation(s)
- Kaixiang Tao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (K.T.); (T.Y.); (M.C.); (X.M.)
| | - Taijia Ye
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (K.T.); (T.Y.); (M.C.); (X.M.)
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (K.T.); (T.Y.); (M.C.); (X.M.)
| | - Xiaolu Meng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (K.T.); (T.Y.); (M.C.); (X.M.)
| | - Yuqing Li
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China;
| | - Huan Wang
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China;
- Correspondence: (H.W.); (Z.F.); Tel./Fax: +86-025-89682133 (H.W.); +86-025-84399511 (Z.F.)
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (K.T.); (T.Y.); (M.C.); (X.M.)
- Correspondence: (H.W.); (Z.F.); Tel./Fax: +86-025-89682133 (H.W.); +86-025-84399511 (Z.F.)
| |
Collapse
|
24
|
Ding W, Zhang Y, Shi S. Development and Application of CRISPR/Cas in Microbial Biotechnology. Front Bioeng Biotechnol 2020; 8:711. [PMID: 32695770 PMCID: PMC7338305 DOI: 10.3389/fbioe.2020.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has been rapidly developed as versatile genomic engineering tools with high efficiency, accuracy and flexibility, and has revolutionized traditional methods for applications in microbial biotechnology. Here, key points of building reliable CRISPR/Cas system for genome engineering are discussed, including the Cas protein, the guide RNA and the donor DNA. Following an overview of various CRISPR/Cas tools for genome engineering, including gene activation, gene interference, orthogonal CRISPR systems and precise single base editing, we highlighted the application of CRISPR/Cas toolbox for multiplexed engineering and high throughput screening. We then summarize recent applications of CRISPR/Cas systems in metabolic engineering toward production of chemicals and natural compounds, and end with perspectives of future advancements.
Collapse
Affiliation(s)
- Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
25
|
Generation of incednine derivatives by mutasynthesis. J Antibiot (Tokyo) 2020; 73:794-797. [DOI: 10.1038/s41429-020-0329-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/19/2020] [Accepted: 05/14/2020] [Indexed: 11/09/2022]
|
26
|
Nguyen CT, Dhakal D, Pham VTT, Nguyen HT, Sohng JK. Recent Advances in Strategies for Activation and Discovery/Characterization of Cryptic Biosynthetic Gene Clusters in Streptomyces. Microorganisms 2020; 8:E616. [PMID: 32344564 PMCID: PMC7232178 DOI: 10.3390/microorganisms8040616] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Streptomyces spp. are prolific sources of valuable natural products (NPs) that are of great interest in pharmaceutical industries such as antibiotics, anticancer chemotherapeutics, immunosuppressants, etc. Approximately two-thirds of all known antibiotics are produced by actinomycetes, most predominantly by Streptomyces. Nevertheless, in recent years, the chances of the discovery of novel and bioactive compounds from Streptomyces have significantly declined. The major hindrance for obtaining such bioactive compounds from Streptomyces is that most of the compounds are not produced in significant titers, or the biosynthetic gene clusters (BGCs) are cryptic. The rapid development of genome sequencing has provided access to a tremendous number of NP-BGCs embedded in the microbial genomes. In addition, the studies of metabolomics provide a portfolio of entire metabolites produced from the strain of interest. Therefore, through the integrated approaches of different-omics techniques, the connection between gene expression and metabolism can be established. Hence, in this review we summarized recent advancements in strategies for activating cryptic BGCs in Streptomyces by utilizing diverse state-of-the-art techniques.
Collapse
Affiliation(s)
- Chung Thanh Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Van Thuy Thi Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Jae-Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea
| |
Collapse
|
27
|
Goh F, Zhang MM, Lim TR, Low KN, Nge CE, Heng E, Yeo WL, Sirota FL, Crasta S, Tan Z, Ng V, Leong CY, Zhang H, Lezhava A, Chen SL, Hoon SS, Eisenhaber F, Eisenhaber B, Kanagasundaram Y, Wong FT, Ng SB. Identification and engineering of 32 membered antifungal macrolactone notonesomycins. Microb Cell Fact 2020; 19:71. [PMID: 32192516 PMCID: PMC7081687 DOI: 10.1186/s12934-020-01328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/12/2020] [Indexed: 12/29/2022] Open
Abstract
Notonesomycin A is a 32-membered bioactive glycosylated macrolactone known to be produced by Streptomyces aminophilus subsp. notonesogenes 647-AV1 and S. aminophilus DSM 40186. In a high throughput antifungal screening campaign, we identified an alternative notonesomycin A producing strain, Streptomyces sp. A793, and its biosynthetic gene cluster. From this strain, we further characterized a new more potent antifungal non-sulfated analogue, named notonesomycin B. Through CRISPR–Cas9 engineering of the biosynthetic gene cluster, we were able to increase the production yield of notonesomycin B by up to 18-fold as well as generate a strain that exclusively produces this analogue.
Collapse
Affiliation(s)
- Falicia Goh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,Biotransformation Innovation Platform, A*STAR, 61 Biopolis Drive, Proteos Level 4, Singapore, 138673, Singapore
| | - Mingzi M Zhang
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, 31 Biopolis Way, Nanos #01-01, Singapore, 138669, Singapore.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan, R.O.C
| | - Tian Ru Lim
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Kia Ngee Low
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Choy Eng Nge
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Elena Heng
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Wan Lin Yeo
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, 31 Biopolis Way, Nanos #01-01, Singapore, 138669, Singapore
| | - Fernanda L Sirota
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Sharon Crasta
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Zann Tan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Veronica Ng
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Chung Yan Leong
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Huibin Zhang
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore
| | - Alexander Lezhava
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore
| | - Swaine L Chen
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore, 119228, Singapore
| | - Shawn S Hoon
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,School of Computer Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | | | - Fong T Wong
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Nanos, Singapore, 138669, Singapore.
| | - Siew Bee Ng
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.
| |
Collapse
|
28
|
Yeo WL, Heng E, Tan LL, Lim YW, Ching KC, Tsai DJ, Jhang YW, Lauderdale TL, Shia KS, Zhao H, Ang EL, Zhang MM, Lim YH, Wong FT. Biosynthetic engineering of the antifungal, anti-MRSA auroramycin. Microb Cell Fact 2020; 19:3. [PMID: 31906943 PMCID: PMC6943886 DOI: 10.1186/s12934-019-1274-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Using an established CRISPR-Cas mediated genome editing technique for streptomycetes, we explored the combinatorial biosynthesis potential of the auroramycin biosynthetic gene cluster in Streptomyces roseosporous. Auroramycin is a potent anti-MRSA polyene macrolactam. In addition, auroramycin has antifungal activities, which is unique among structurally similar polyene macrolactams, such as incednine and silvalactam. In this work, we employed different engineering strategies to target glycosylation and acylation biosynthetic machineries within its recently elucidated biosynthetic pathway. Auroramycin analogs with variations in C-, N- methylation, hydroxylation and extender units incorporation were produced and characterized. By comparing the bioactivity profiles of five of these analogs, we determined that unique disaccharide motif of auroramycin is essential for its antimicrobial bioactivity. We further demonstrated that C-methylation of the 3, 5-epi-lemonose unit, which is unique among structurally similar polyene macrolactams, is key to its antifungal activity.
Collapse
Affiliation(s)
- Wan Lin Yeo
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - Elena Heng
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, Biopolis, Singapore
| | - Lee Ling Tan
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, Biopolis, Singapore
| | - Yi Wee Lim
- Integrated Bio & Organic Chemistry, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - Kuan Chieh Ching
- Integrated Bio & Organic Chemistry, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - De-Juin Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Yi Wun Jhang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Huimin Zhao
- Departments of Chemical and Biomolecular Engineering, Chemistry, Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ee Lui Ang
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - Mingzi M Zhang
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yee Hwee Lim
- Integrated Bio & Organic Chemistry, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore.
| | - Fong T Wong
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, Biopolis, Singapore.
| |
Collapse
|
29
|
Genome mining and prospects for antibiotic discovery. Curr Opin Microbiol 2019; 51:1-8. [DOI: 10.1016/j.mib.2019.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
|
30
|
Wang J, Hu X, Sun G, Li L, Jiang B, Li S, Bai L, Liu H, Yu L, Wu L. Genome-Guided Discovery of Pretilactam from Actinosynnema pretiosum ATCC 31565. Molecules 2019; 24:molecules24122281. [PMID: 31248172 PMCID: PMC6631532 DOI: 10.3390/molecules24122281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022] Open
Abstract
Actinosynnema is a small but well-known genus of actinomycetes for production of ansamitocin, the payload component of antibody-drug conjugates against cancers. However, the secondary metabolite production profile of Actinosynnema pretiosum ATCC 31565, the most famous producer of ansamitocin, has never been fully explored. Our antiSMASH analysis of the genomic DNA of Actinosynnema pretiosum ATCC 31565 revealed a NRPS-PKS gene cluster for polyene macrolactam. The gene cluster is very similar to gene clusters for mirilactam and salinilactam, two 26-membered polyene macrolactams from Actinosynnema mirum and Salinispora tropica, respectively. Guided by this bioinformatics prediction, we characterized a novel 26-membered polyene macrolactam from Actinosynnema pretiosum ATCC 31565 and designated it pretilactam. The structure of pretilactam was elucidated by a comprehensive analysis of HRMS, 1D and 2D-NMR, with absolute configuration of chiral carbons predicted bioinformatically. Pretilactam features a dihydroxy tetrahydropyran moiety, and has a hexaene unit and a diene unit as its polyene system. A preliminary antibacterial assay indicated that pretilactam is inactive against Bacillus subtilis and Candida albicans.
Collapse
Affiliation(s)
- Jing Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaowen Hu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guizhi Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Linli Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Bingya Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shufen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hongyu Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Liyan Yu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Linzhuan Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
31
|
Wong JH, Alfatah M, Kong KW, Hoon S, Yeo WL, Ching KC, Jie Hui Goh C, Zhang MM, Lim YH, Wong FT, Arumugam P. Chemogenomic profiling in yeast reveals antifungal mode-of-action of polyene macrolactam auroramycin. PLoS One 2019; 14:e0218189. [PMID: 31181115 PMCID: PMC6557514 DOI: 10.1371/journal.pone.0218189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we report antifungal activity of auroramycin against Candida albicans, Candida tropicalis, and Cryptococcus neoformans. Auroramycin, a potent antimicrobial doubly glycosylated 24-membered polyene macrolactam, was previously isolated and characterized, following CRISPR-Cas9 mediated activation of a silent polyketide synthase biosynthetic gene cluster in Streptomyces rosesporous NRRL 15998. Chemogenomic profiling of auroramycin in yeast has linked its antifungal bioactivity to vacuolar transport and membrane organization. This was verified by disruption of vacuolar structure and membrane integrity of yeast cells with auroramycin treatment. Addition of salt but not sorbitol to the medium rescued the growth of auroramycin-treated yeast cells suggesting that auroramycin causes ionic stress. Furthermore, auroramycin caused hyperpolarization of the yeast plasma membrane and displayed a synergistic interaction with cationic hygromycin. Our data strongly suggest that auroramycin inhibits yeast cells by causing leakage of cations from the cytoplasm. Thus, auroramycin’s mode-of-action is distinct from known antifungal polyenes, reinforcing the importance of natural products in the discovery of new anti-infectives.
Collapse
Affiliation(s)
| | | | | | - Shawn Hoon
- Molecular Engineering Laboratory, Singapore
| | - Wan Lin Yeo
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Singapore
| | - Kuan Chieh Ching
- Organic Chemistry, Institute of Chemical and Engineering Sciences, Singapore
| | | | - Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Singapore
| | - Yee Hwee Lim
- Organic Chemistry, Institute of Chemical and Engineering Sciences, Singapore
| | | | | |
Collapse
|
32
|
Yeo WL, Heng E, Tan LL, Lim YW, Lim YH, Hoon S, Zhao H, Zhang MM, Wong FT. Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes. Biotechnol Bioeng 2019; 116:2330-2338. [PMID: 31090220 DOI: 10.1002/bit.27021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
Application of the well-characterized Streptococcus pyogenes CRISPR-Cas9 system in actinomycetes streptomycetes has enabled high-efficiency multiplex genome editing and CRISPRi-mediated transcriptional regulation in these prolific bioactive metabolite producers. Nonetheless, SpCas9 has its limitations and can be ineffective depending on the strains and target sites. Here, we built and tested alternative CRISPR-Cas constructs based on the standalone pCRISPomyces-2 editing plasmid. We showed that Streptococcus thermophilus CRISPR1 Cas9 (sth1Cas9), Staphylococcus aureus Cas9 (saCas9), and Francisella tularensis subsp. novicida U112 Cpf1 (fnCpf1) are functional in multiple streptomycetes, enabling efficient homology-directed repair-mediated knock-in and deletion. In strains where spCas9 was nonfunctional, these alternative Cas systems enabled precise genomic modifications within biosynthetic gene clusters for the discovery, production, and diversification of natural products. These additional Cas proteins provide us with the versatility to overcome the limitations of individual CRISPR-Cas systems for genome editing and transcriptional regulation of these industrially important bacteria.
Collapse
Affiliation(s)
- Wan Lin Yeo
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, A*STAR, Singapore, Singapore
| | - Elena Heng
- Molecular Engineering Laboratory, Biomedical Institutes of Sciences, A*STAR, Singapore, Singapore
| | - Lee Ling Tan
- Molecular Engineering Laboratory, Biomedical Institutes of Sciences, A*STAR, Singapore, Singapore
| | - Yi Wee Lim
- Organic Chemistry, Institute of Chemical and Engineering Sciences, A*STAR, Singapore, Singapore
| | - Yee Hwee Lim
- Organic Chemistry, Institute of Chemical and Engineering Sciences, A*STAR, Singapore, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, Biomedical Institutes of Sciences, A*STAR, Singapore, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, A*STAR, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Illinois, United States
- Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois, United States
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois, United States
| | - Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, A*STAR, Singapore, Singapore
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Fong Tian Wong
- Molecular Engineering Laboratory, Biomedical Institutes of Sciences, A*STAR, Singapore, Singapore
| |
Collapse
|
33
|
Palazzotto E, Tong Y, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 2019; 37:107366. [PMID: 30853630 DOI: 10.1016/j.biotechadv.2019.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
34
|
Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. ACTA ACUST UNITED AC 2019; 46:281-299. [DOI: 10.1007/s10295-018-2115-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
Abstract
Natural product discovery from microorganisms provided important sources for antibiotics, anti-cancer agents, immune-modulators, anthelminthic agents, and insecticides during a span of 50 years starting in the 1940s, then became less productive because of rediscovery issues, low throughput, and lack of relevant new technologies to unveil less abundant or not easily detected drug-like natural products. In the early 2000s, it was observed from genome sequencing that Streptomyces species encode about ten times as many secondary metabolites as predicted from known secondary metabolomes. This gave rise to a new discovery approach—microbial genome mining. As the cost of genome sequencing dropped, the numbers of sequenced bacteria, fungi and archaea expanded dramatically, and bioinformatic methods were developed to rapidly scan whole genomes for the numbers, types, and novelty of secondary metabolite biosynthetic gene clusters. This methodology enabled the identification of microbial taxa gifted for the biosynthesis of drug-like secondary metabolites. As genome sequencing technology progressed, the realities relevant to drug discovery have emerged, the conjectures and misconceptions have been clarified, and opportunities to reinvigorate microbial drug discovery have crystallized. This perspective addresses these critical issues for drug discovery.
Collapse
|
35
|
Wei J, He L, Niu G. Regulation of antibiotic biosynthesis in actinomycetes: Perspectives and challenges. Synth Syst Biotechnol 2018; 3:229-235. [PMID: 30417136 PMCID: PMC6215055 DOI: 10.1016/j.synbio.2018.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023] Open
Abstract
Actinomycetes are the main sources of antibiotics. The onset and level of production of each antibiotic is subject to complex control by multi-level regulators. These regulators exert their functions at hierarchical levels. At the lower level, cluster-situated regulators (CSRs) directly control the transcription of neighboring genes within the gene cluster. Higher-level pleiotropic and global regulators exert their functions mainly through modulating the transcription of CSRs. Advances in understanding of the regulation of antibiotic biosynthesis in actinomycetes have inspired us to engineer these regulators for strain improvement and antibiotic discovery.
Collapse
Affiliation(s)
- Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Lang He
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
36
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2018; 35:1024-1028. [PMID: 30209473 DOI: 10.1039/c8np90032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as huperphlegmine A from Huperzia phlegmaria.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
37
|
Kemung HM, Tan LTH, Khan TM, Chan KG, Pusparajah P, Goh BH, Lee LH. Streptomyces as a Prominent Resource of Future Anti-MRSA Drugs. Front Microbiol 2018; 9:2221. [PMID: 30319563 PMCID: PMC6165876 DOI: 10.3389/fmicb.2018.02221] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/30/2018] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as they tend to cause severe infections in vulnerable populations and are difficult to treat due to a limited range of effective antibiotics and also their ability to form biofilm. These organisms were once limited to hospital acquired infections but are now widely present in the community and even in animals. Furthermore, these organisms are constantly evolving to develop resistance to more antibiotics. This results in a need for new clinically useful antibiotics and one potential source are the Streptomyces which have already been the source of several anti-MRSA drugs including vancomycin. There remain large numbers of Streptomyces potentially undiscovered in underexplored regions such as mangrove, deserts, marine, and freshwater environments as well as endophytes. Organisms from these regions also face significant challenges to survival which often result in the production of novel bioactive compounds, several of which have already shown promise in drug development. We review the various mechanisms of antibiotic resistance in MRSA and all the known compounds isolated from Streptomyces with anti-MRSA activity with a focus on those from underexplored regions. The isolation of the full array of compounds Streptomyces are potentially capable of producing in the laboratory has proven a challenge, we also review techniques that have been used to overcome this obstacle including genetic cluster analysis. Additionally, we review the in vivo work done thus far with promising compounds of Streptomyces origin as well as the animal models that could be used for this work.
Collapse
Affiliation(s)
- Hefa Mangzira Kemung
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,The Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Mueang Phayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Mueang Phayao, Thailand
| |
Collapse
|