1
|
Laure A, Royet C, Bihel F, Baratte B, Bach S, Peyressatre M, Morris MC. Ethaverine and Papaverine Target Cyclin-Dependent Kinase 5 and Inhibit Lung Cancer Cell Proliferation and Migration. ACS Pharmacol Transl Sci 2024; 7:1377-1385. [PMID: 38751642 PMCID: PMC11091981 DOI: 10.1021/acsptsci.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
CDK5 kinase plays a central role in the regulation of neuronal functions, and its hyperactivation has been associated with neurodegenerative pathologies and more recently with several human cancers, in particular lung cancer. However, ATP-competitive inhibitors targeting CDK5 are poorly selective and suffer limitations, calling for new classes of inhibitors. In a screen for allosteric modulators of CDK5, we identified ethaverine and closely related derivative papaverine and showed that they inhibit cell proliferation and migration of non small cell lung cancer cell lines. Moreover the efficacy of these compounds is significantly enhanced when combined with the ATP-competitive inhibitor roscovitine, suggesting an additive dual mechanism of inhibition targeting CDK5. These compounds do not affect CDK5 stability, but thermodenaturation studies performed with A549 cell extracts infer that they interact with CDK5 in cellulo. Furthermore, the inhibitory potentials of ethaverine and papaverine are reduced in A549 cells treated with siRNA directed against CDK5. Taken together, our results provide unexpected and novel evidence that ethaverine and papaverine constitute promising leads that can be repurposed for targeting CDK5 in lung cancer.
Collapse
Affiliation(s)
- Arthur Laure
- Institut
des Biomolécules Max Mousseron, CNRS, UMR 5247, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Chloé Royet
- Institut
des Biomolécules Max Mousseron, CNRS, UMR 5247, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Frederic Bihel
- Laboratoire
d’Innovation Thérapeutique, IMS, UMR 7200, CNRS, Université de Strasbourg, 67401 Illkirch, France
| | - Blandine Baratte
- CNRS,
FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized
Screening Facility), Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS,
UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Stéphane Bach
- CNRS,
FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized
Screening Facility), Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS,
UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Marion Peyressatre
- Institut
des Biomolécules Max Mousseron, CNRS, UMR 5247, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - May C. Morris
- Institut
des Biomolécules Max Mousseron, CNRS, UMR 5247, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
2
|
Selection of fluorescent biosensors against galectin-3 from an NBD-modified phage library displaying designed α-helical peptides. Bioorg Med Chem Lett 2021; 37:127835. [PMID: 33556574 DOI: 10.1016/j.bmcl.2021.127835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Fluorescent biosensors are indispensable tools for molecular imaging, detection, and drug screening. Conventionally, fluorescent biosensors were constructed by incorporating fluorophores into ligands. Here, to develop ligand-independent biosensors, we demonstrated biosensor selection from a fluorophore-modified peptide phage library. In this library, the peptides were designed to form α-helical structures, and one cysteine, the probe modification site, was located at the center of four randomized residues on the same face of the helix. By conjugation with 4-nitrobenzoxadiazole (NBD), we constructed an NBD-modified phage library. We conducted selection against galectin-3 (Gal-3), a galactose-specific lectin associated with various biological events such as tumor metastasis and insulin resistance. After biopanning, we obtained NBD-modified peptides that selectively bind to Gal-3 from the library. The fluorescence intensity of the hit biosensors increased with the concentration of Gal-3, and this fluorescent response was visually observed.
Collapse
|
3
|
Bouclier C, Simon M, Laconde G, Pellerano M, Diot S, Lantuejoul S, Busser B, Vanwonterghem L, Vollaire J, Josserand V, Legrand B, Coll JL, Amblard M, Hurbin A, Morris MC. Stapled peptide targeting the CDK4/Cyclin D interface combined with Abemaciclib inhibits KRAS mutant lung cancer growth. Am J Cancer Res 2020; 10:2008-2028. [PMID: 32104498 PMCID: PMC7019173 DOI: 10.7150/thno.40971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
CDK4/cyclin D kinase constitutes an attractive pharmacological target for development of anticancer therapeutics, in particular in KRAS-mutant lung cancer patients, who have a poor prognosis and no targeted therapy available yet. Although several ATP-competitive inhibitors of CDK4 have been developed for anticancer therapeutics, they suffer from limited specificity and efficacy. Methods: As an alternative to ATP-competitive inhibitors we have designed a stapled peptide to target the main interface between CDK4 and cyclin D, and have characterized its physico-chemical properties and affinity to bind cyclin D1. Results: We have validated a positive correlation between CDK4/cyclin D level and KRAS mutation in lung cancer patients. The stapled peptide enters cells rapidly and efficiently, and inhibits CDK4 kinase activity and proliferation in lung cancer cells. Its intrapulmonary administration in mice enables its retention in orthotopic lung tumours and complete inhibition of their growth when co-administered with Abemaciclib. Conclusion: The stapled peptide targeting the main interface between CDK4 and cyclin D provides promising therapeutic perspectives for patients with lung cancer.
Collapse
|
4
|
Deepa, Pundir S, Pundir C. Detection of tumor suppressor protein p53 with special emphasis on biosensors: A review. Anal Biochem 2020; 588:113473. [PMID: 31610154 DOI: 10.1016/j.ab.2019.113473] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/21/2023]
|
5
|
Liu L, Zhu H, Wu W, Shen Y, Lin X, Wu Y, Liu L, Tang J, Zhou Y, Sun F, Lin HW. Neoantimycin F, a Streptomyces-Derived Natural Product Induces Mitochondria-Related Apoptotic Death in Human Non-Small Cell Lung Cancer Cells. Front Pharmacol 2019; 10:1042. [PMID: 31619992 PMCID: PMC6760012 DOI: 10.3389/fphar.2019.01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/16/2019] [Indexed: 01/15/2023] Open
Abstract
Streptomyces-derived natural products have been become a major focus of anti-tumor drug discovery studies. Neoantimycin F (NAT-F), was isolated from Streptomyces conglobatus by our group. Here, we examined the anti-cancer activities and its underlying molecular mechanisms implicated in NAT-F-induced apoptosis of non-small cell lung cancer (NSCLC) cells. Our results showed that NAT-F exerted excellent growth-inhibitory activity against PC9 and H1299 cells in a concentration-dependent manner. NAT-F-induced cell cycle arrest at S and G0/G1 phase in PC9 and H1299 cells, respectively. Further investigation revealed that the key proteins (including cyclinD1, cyclinE1, cyclinB1, CDK2, and CDK4) were involved in the cell regulation by NAT-F. Additionally, NAT-F significantly increased the production of reactive oxygen species (ROS), induced DNA damage, nuclear condensation, and cell apoptosis in both cell lines. Moreover, loss of the mitochondrial membrane potential (MMP) was markedly induced by NAT-F. Additional results revealed that NAT-F could up-regulate pro-apoptotic protein Bax and down-regulate anti-apoptotic protein Bcl-2, Mcl-1, and Bcl-xL, resulting in cytochrome c release from mitochondria and sequential activation of caspase-9 and -3, as well as the cleavage of poly (ADP-ribose) polymerase. Meanwhile, c-Jun N-terminal kinase (JNK), p38 MAPK (p38), and extracellular signal-regulated kinase (ERK) signaling pathway were also involved in anti-cancer activity of NAT-F in NSCLC cells. Taken together, these findings indicated that NAT-F possessed anti-proliferative effect and induced apoptosis in NSCLC cells in vitro and may be conducive to promote the development of novel anti-NSCLC agents.
Collapse
Affiliation(s)
- Liyun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongrui Zhu
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Liaoning, China
| | - Wei Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Lin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Tang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Schlüter F, Ravoo BJ, Rizzo F. Self-assembled multilayer surfaces of highly fluorescent spirobifluorene-based dye for label-free protein recognition. J Mater Chem B 2019; 7:4933-4939. [PMID: 31411615 DOI: 10.1039/c9tb00854c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The preparation of smart surfaces for protein detection is a challenging field of research. With the aim to achieve label-free detection in the solid state, we report on the organic surface functionalization for protein recognition without the need of previous chemical modification of the fluorophore. Layer-by-layer deposition of polyelectrolyte poly(vinyl benzyl tetramethylammonium) chloride (p(VBTMA)Cl) and a tetrasulfonate water-soluble low molecular weight fluorophore (1) based on spirobifluorene leads to modified glass and quartz substrates with outstanding photophysical properties in response to bovine serum albumin (BSA). The absorbance, photoluminescence as well as the fluorescence lifetimes were recorded for all surfaces. The surface structure and height of the different number of bilayers polymer/fluorophore were characterized by atomic force microscopy and ellipsometry. The results show linear trends in the absorption, fluorescence and height of the multilayer with increasing number of functionalization steps. Upon incubation with BSA the multilayer shows an increase in fluorescence up to 3-fold, which is also detectable with the naked eye. In conclusion, we report an easy, fast and biocompatible approach for the construction of protein sensors by self-assembly.
Collapse
Affiliation(s)
- Friederike Schlüter
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany. and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany. and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Fabio Rizzo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany. and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany and Institute of Molecular Science and Technologies (ISTM) and INSTM, National Research Council (CNR), via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|