1
|
Nguyen LNKT, Derra S, Hahn F. The Relationship between Substrate Structure and Selectivity of Ketoreduction in Multimodular Polyketide Synthases: A Comparative Study of A-Type Ketoreductases from Late Modules Using Complex Precursor Analogues. ACS Chem Biol 2025; 20:186-196. [PMID: 39772407 DOI: 10.1021/acschembio.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Ketoreductases (KRs) are domains in the reductive loops of type I polyketide synthases (PKSs) and are responsible for the majority of stereocenters in reduced polyketides. Although the highly stereoselective reduction of ACP-bound β-ketothioester intermediates by KRs is crucial for the overall functioning of PKSs, the substrate-dependent stereoselectivity of KRs is a factor that is not yet fully understood, especially for KR domains in late PKS modules that act on biosynthetic precursors with complex polyketidic moieties. We present studies on the three KR domains FosKR7, PlmKR6, and EryKR6 from the biosynthetic pathways of fostriecin, phoslactomycin, and erythromycin by in vitro assays using close surrogates of the octaketidic FosKR7 biosynthetic precursor, complex derivatives and a diketide in the form of their biomimetic N-acetylcysteamine thioesters. Supported by molecular modeling, specific interactions of the studied KR domains with the extended polyketide moieties of their natural precursors were identified and correlated to the differences in stereoselectivity observed in the in vitro assays. These results reinforce the importance of the substrate-dependent stereoselectivity of KR domains in PKSs and suggest more detailed experimental and structural studies with isolated KRs and full PKS modules that could ultimately lead to improved results in PKS engineering.
Collapse
Affiliation(s)
- Lisa N K T Nguyen
- Professur Organische Chemie IV, Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Sebastian Derra
- Professur Organische Chemie IV, Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Frank Hahn
- Professur Organische Chemie IV, Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
2
|
Schröder M, Roß T, Hemmerling F, Hahn F. Studying a Bottleneck of Multimodular Polyketide Synthase Processing: the Polyketide Structure-Dependent Performance of Ketoreductase Domains. ACS Chem Biol 2022; 17:1030-1037. [PMID: 35412301 DOI: 10.1021/acschembio.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ketoreductases (KRs) are canonical domains of type I polyketide synthases (PKSs). They stereoselectively reduce ACP-bound β-ketothioester intermediates and are responsible for a large part of the stereocenters in reduced polyketides. Albeit essential for the understanding and engineering of PKS, the specific effects of altering the polyketide part of KR precursors on their performance has rarely been studied. We present investigations on the substrate-dependent performance of six isolated KR domains using a library of structurally diverse surrogates for PKS thioester intermediates. A pronounced correlation between the polyketide structure and the KR performance was observed with activity and stereoselectivity diminishing with growing deviation from the natural KR precursor structure. The extent of this decrease and the profile of arising side products was characteristic for the individual KRs. Our results reinforce the importance of structure-KR performance relationships and suggest extended studies with isolated domains and whole PKS modules.
Collapse
Affiliation(s)
- Marius Schröder
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Theresa Roß
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Franziska Hemmerling
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
3
|
SeMPI 2.0-A Web Server for PKS and NRPS Predictions Combined with Metabolite Screening in Natural Product Databases. Metabolites 2020; 11:metabo11010013. [PMID: 33383692 PMCID: PMC7823522 DOI: 10.3390/metabo11010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/10/2023] Open
Abstract
Microorganisms produce secondary metabolites with a remarkable range of bioactive properties. The constantly increasing amount of published genomic data provides the opportunity for efficient identification of biosynthetic gene clusters by genome mining. On the other hand, for many natural products with resolved structures, the encoding biosynthetic gene clusters have not been identified yet. Of those secondary metabolites, the scaffolds of nonribosomal peptides and polyketides (type I modular) can be predicted due to their building block-like assembly. SeMPI v2 provides a comprehensive prediction pipeline, which includes the screening of the scaffold in publicly available natural compound databases. The screening algorithm was designed to detect homologous structures even for partial, incomplete clusters. The pipeline allows linking of gene clusters to known natural products and therefore also provides a metric to estimate the novelty of the cluster if a matching scaffold cannot be found. Whereas currently available tools attempt to provide comprehensive information about a wide range of gene clusters, SeMPI v2 aims to focus on precise predictions. Therefore, the cluster detection algorithm, including building block generation and domain substrate prediction, was thoroughly refined and benchmarked, to provide high-quality scaffold predictions. In a benchmark based on 559 gene clusters, SeMPI v2 achieved comparable or better results than antiSMASH v5. Additionally, the SeMPI v2 web server provides features that can help to further investigate a submitted gene cluster, such as the incorporation of a genome browser, and the possibility to modify a predicted scaffold in a workbench before the database screening.
Collapse
|
4
|
Drufva EE, Spengler NR, Hix EG, Bailey CB. Site-Directed Mutagenesis of Modular Polyketide Synthase Ketoreductase Domains for Altered Stereochemical Control. Chembiochem 2020; 22:1122-1150. [PMID: 33185924 DOI: 10.1002/cbic.202000613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Indexed: 12/18/2022]
Abstract
Bacterial modular type I polyketide synthases (PKSs) are complex multidomain assembly line proteins that produce a range of pharmaceutically relevant molecules with a high degree of stereochemical control. Due to their colinear properties, they have been considerable targets for rational biosynthetic pathway engineering. Among the domains harbored within these complex assembly lines, ketoreductase (KR) domains have been extensively studied with the goal of altering their stereoselectivity by site-directed mutagenesis, as they confer much of the stereochemical complexity present in pharmaceutically active reduced polyketide scaffolds. Here we review all efforts to date to perform site-directed mutagenesis on PKS KRs, most of which have been done in the context of excised KR domains on model diffusible substrates such as β-keto N-acetyl cysteamine thioesters. We also discuss the challenges around translating the findings of these studies to alter stereocontrol in the context of a complex multidomain enzymatic assembly line.
Collapse
Affiliation(s)
- Erin E Drufva
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| | - Nolan R Spengler
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| | - Elijah G Hix
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| | - Constance B Bailey
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Wunderlich J, Roß T, Schröder M, Hahn F. Step-Economic Synthesis of Biomimetic β-Ketopolyene Thioesters and Demonstration of Their Usefulness in Enzymatic Biosynthesis Studies. Org Lett 2020; 22:4955-4959. [PMID: 32610930 DOI: 10.1021/acs.orglett.0c01348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies on the biosynthetic processing of polyene thioester intermediates are complicated by limited access to appropriate substrate surrogates. We present a step-economic synthetic access to biomimetic β-ketopolyene thioesters that is based on an Ir-catalyzed reductive Horner-Wadsworth-Emmons olefination. New β-ketotriene and pentaenethioates of pantetheine and N-acetylcysteamine were exemplarily synthesized via short and concise routes. The usefulness of these compounds was demonstrated in an in vitro assay with the ketoreductase domain MycKRB from mycolactone biosynthesis.
Collapse
Affiliation(s)
- Johannes Wunderlich
- Fakultät Biologie, Chemie und Geologie, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Theresa Roß
- Fakultät Biologie, Chemie und Geologie, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Marius Schröder
- Fakultät Biologie, Chemie und Geologie, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Frank Hahn
- Fakultät Biologie, Chemie und Geologie, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
6
|
Drufva EE, Hix EG, Bailey CB. Site directed mutagenesis as a precision tool to enable synthetic biology with engineered modular polyketide synthases. Synth Syst Biotechnol 2020; 5:62-80. [PMID: 32637664 PMCID: PMC7327777 DOI: 10.1016/j.synbio.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Modular polyketide synthases (PKSs) are a multidomain megasynthase class of biosynthetic enzymes that have great promise for the development of new compounds, from new pharmaceuticals to high value commodity and specialty chemicals. Their colinear biosynthetic logic has been viewed as a promising platform for synthetic biology for decades. Due to this colinearity, domain swapping has long been used as a strategy to introduce molecular diversity. However, domain swapping often fails because it perturbs critical protein-protein interactions within the PKS. With our increased level of structural elucidation of PKSs, using judicious targeted mutations of individual residues is a more precise way to introduce molecular diversity with less potential for global disruption of the protein architecture. Here we review examples of targeted point mutagenesis to one or a few residues harbored within the PKS that alter domain specificity or selectivity, affect protein stability and interdomain communication, and promote more complex catalytic reactivity.
Collapse
Key Words
- ACP, acyl carrier protein
- AT, acyltransferase
- DEBS, 6-deoxyerthronolide B synthase
- DH, dehydratase
- EI, enoylisomerase
- ER, enoylreductase
- KR, ketoreductase
- KS, ketosynthase
- LM, loading module
- MT, methyltransferase
- Mod, module
- PKS, polyketide synthase
- PS, pyran synthase
- Polyketide synthase
- Protein engineering
- Rational design
- SNAC, N-acetyl cysteamine
- Saturation mutagenesis
- Site directed mutagenesis
- Synthetic biology
Collapse
Affiliation(s)
- Erin E. Drufva
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Elijah G. Hix
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Constance B. Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| |
Collapse
|