1
|
Miton L, Antonetti E, Poujade M, Dutasta JP, Nava P, Martinez A, Cotelle Y. Self-assembled tetrazine cryptophane for ion pair recognition and guest release by cage disassembly. Chem Commun (Camb) 2024; 60:5217-5220. [PMID: 38656223 DOI: 10.1039/d4cc01421a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Hereby, we describe the synthesis of a self-assembled syn-cryptophane using dynamic nucleophilic aromatic substitution of tetrazines. 1H NMR cage titrations reveal that the tetramethylammonium cation binds under slow exchange conditions while counter-anions show a fast exchange regime. Finally, the cryptophane can be disassembled by the addition of thiols allowing guest release.
Collapse
Affiliation(s)
- Louise Miton
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| | - Elise Antonetti
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| | - Marie Poujade
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| | - Jean-Pierre Dutasta
- ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Paola Nava
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| | - Alexandre Martinez
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| | - Yoann Cotelle
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| |
Collapse
|
2
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
3
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
4
|
Baydoun O, Buffeteau T, Brotin T. Enantiopure cryptophane derivatives: Synthesis and chiroptical properties. Chirality 2021; 33:562-596. [PMID: 34464474 DOI: 10.1002/chir.23347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/30/2023]
Abstract
This review addresses the synthesis of enantiopure cryptophane and the study of their chiroptical properties. Cryptophane derivatives represent an important class of macrocyclic compounds that can bind a large range of species in solution under different conditions. The overwhelming majority of these host molecules is chiral, and their chiroptical properties have been thoroughly investigated. The first part of this review is dedicated to the optical resolution and the synthesis of enantiopure cryptophane derivatives. In a second part, the study of the chiroptical properties of these molecular hosts by different techniques such as electronic and vibrational circular dichroism and Raman optical activity is detailed. These techniques allow the determination of the absolute configuration of cryptophane derivatives and provide useful information about their conformation in different conditions.
Collapse
Affiliation(s)
- Orsola Baydoun
- Laboratoire de Chimie, Ens de Lyon, CNRS UMR 5182, Lyon, France
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires, CNRS UMR 5255, Bordeaux University, Talence, France
| | - Thierry Brotin
- Laboratoire de Chimie, Ens de Lyon, CNRS UMR 5182, Lyon, France
| |
Collapse
|
5
|
Zemerov SD, Lin Y, Dmochowski IJ. Monomeric Cryptophane with Record-High Xe Affinity Gives Insights into Aggregation-Dependent Sensing. Anal Chem 2021; 93:1507-1514. [PMID: 33356164 DOI: 10.1021/acs.analchem.0c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cryptophane host molecules provide ultrasensitive contrast agents for 129Xe NMR/MRI. To investigate key features of cryptophane-Xe sensing behavior, we designed a novel water-soluble cryptophane with a pendant hydrophobic adamantyl moiety, which has good affinity for a model receptor, beta-cyclodextrin (β-CD). Adamantyl-functionalized cryptophane-A (AFCA) was synthesized and characterized for Xe affinity, 129Xe NMR signal, and aggregation state at varying AFCA and β-CD concentrations. The Xe-AFCA association constant was determined by fluorescence quenching, KA = 114,000 ± 5000 M-1 at 293 K, which is the highest reported affinity for a cryptophane host in phosphate-buffered saline (pH 7.2). No hyperpolarized (hp) 129Xe NMR peak corresponding to AFCA-bound Xe was directly observed at high (100 μM) AFCA concentration, where small cryptophane aggregates were observed, and was only detected at low (15 μM) AFCA concentration, where the sensor remained fully monomeric in solution. Additionally, we observed no change in the chemical shift of AFCA-encapsulated 129Xe after β-CD binding to the adamantyl moiety and a concomitant lack of change in the size distribution of the complex, suggesting that a change in the aggregation state is necessary to elicit a 129Xe NMR chemical shift in cryptophane-based sensing. These results aid in further elucidating the recently discovered aggregation phenomenon, highlight limitations of cryptophane-based Xe sensing, and offer insights into the design of monomeric, high-affinity Xe sensors.
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yannan Lin
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
7
|
Du K, Zemerov SD, Carroll PJ, Dmochowski IJ. Paramagnetic Shifts and Guest Exchange Kinetics in Co nFe 4-n Metal-Organic Capsules. Inorg Chem 2020; 59:12758-12767. [PMID: 32851844 DOI: 10.1021/acs.inorgchem.0c01816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the magnetic resonance properties and exchange kinetics of guest molecules in a series of hetero-bimetallic capsules, [ConFe4-nL6]4- (n = 1-3), where L2- = 4,4'-bis[(2-pyridinylmethylene)amino]-[1,1'-biphenyl]-2,2'-disulfonate. H bond networks between capsule sulfonates and guanidinium cations promote the crystallization of [ConFe4-nL6]4-. The following four isostructural crystals are reported: two guest-free forms, (C(NH2)3)4[Co1.8Fe2.2L6]·69H2O (1) and (C(NH2)3)4[Co2.7Fe1.3L6]·73H2O (2), and two Xe- and CFCl3-encapsulated forms, (C(NH2)3)4[(Xe)0.8Co1.8Fe2.2L6]·69H2O (3) and (C(NH2)3)4[(CFCl3)Co2.0Fe2.0L6]·73H2O (4), respectively. Structural analyses reveal that Xe induces negligible structural changes in 3, while the angles between neighboring phenyl groups expand by ca. 3° to accommodate the much larger guest, CFCl3, in 4. These guest-encapsulated [ConFe4-nL6]4- molecules reveal 129Xe and 19F chemical shift changes of ca. -22 and -10 ppm at 298 K, respectively, per substitution of low-spin FeII by high-spin CoII. Likewise, the temperature dependence of the 129Xe and 19F NMR resonances increases by 0.1 and 0.06 ppm/K, respectively, with each additional paramagnetic CoII center. The optimal temperature for hyperpolarized (hp) 129Xe chemical exchange saturation transfer (hyper-CEST) with [ConFe4-nL6]4- capsules was found to be inversely proportional to the number of CoII centers, n, which is consistent with the Xe chemical exchange accelerating as the portals expand. The systematic study was facilitated by the tunability of the [M4L6]4- capsules, further highlighting these metal-organic systems for developing responsive sensors with highly shifted 129Xe resonances.
Collapse
Affiliation(s)
- Kang Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|