1
|
Nakazawa H, Okada I, Ito T, Ishigaki Y, Kumagai I, Umetsu M. Combinatorial optimization of the hybrid cellulase complex structure designed from modular libraries. Sci Rep 2024; 14:22429. [PMID: 39342015 PMCID: PMC11438973 DOI: 10.1038/s41598-024-73541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Cellulase selectively recognizes cellulose surfaces and cleaves their β-1,4-glycosidic bonds. Combining hydrolysis using cellulase and fermentation can produce alternative fuels and chemical products. However, anaerobic bacteria produce only low levels of highly active cellulase complexes so-called cellulosomes. Therefore, we designed hybrid cellulase complexes from 49 biotinylated catalytic domain (CD) and 30 biotinylated cellulose-binding domain (CBD) libraries on streptavidin-conjugated nanoparticles to enhance cellulose hydrolysis by mimicking the cellulosome structure. The hybrid cellulase complex, incorporating both native CD and CBD, significantly improved reducing sugar production from cellulose compared to free native modular enzymes. The optimal CBD for each hybrid cellulase complex differed from that of the native enzyme. The most effective hybrid cellulase complex was observed with the combination of CD6-4 from Thermobifida fusca YX and CBD46 from the Bacillus halodurans C-125. The hybrid cellulase complex/CD6-4-CBD46 and -CD6-4-CBD2-5 combinations showed increased reducing sugar production. Similar results were also observed in microcrystalline cellulose degradation. Furthermore, clustering on nanoparticles enhanced enzyme thermostability. Our results demonstrate that hybrid cellulase complex structures improve enzyme function through synergistic effects and extend the lifespan of the enzyme.
Collapse
Affiliation(s)
- Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-Ku, Sendai, 980-8579, Japan.
| | - Izumi Okada
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-Ku, Sendai, 980-8579, Japan
| | - Tomoyuki Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-Ku, Sendai, 980-8579, Japan
| | - Yuri Ishigaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-Ku, Sendai, 980-8579, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-Ku, Sendai, 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-Ku, Sendai, 980-8579, Japan.
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
| |
Collapse
|
2
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
3
|
Li X, Jian H, Han Q, Wang A, Li J, Man N, Li Q, Bai S, Li J. Three-dimensional (3D) bioprinting of medium toughened dipeptide hydrogel scaffolds with Hofmeister effect. J Colloid Interface Sci 2023; 639:1-6. [PMID: 36796110 DOI: 10.1016/j.jcis.2023.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Short peptide self-assembled hydrogels as 3D bioprinting inks show excellent biocompatibility and diverse functional expansion, and have broad application prospects in cell culture and tissue engineering. However, the preparation of biological hydrogel inks with adjustable mechanical strength and controllable degradation for 3D bioprinting still faces big challenges. Herein, we develop dipeptide bio-inks that can be gelled in-situ based on Hofmeister sequence, and prepare hydrogel scaffold by using a layer-by-layer 3D printing strategy. Excitingly, after the introduction of Dulbecco's Modified Eagle's medium (DMEM), which is necessary for cell culture, the hydrogel scaffolds show an excellent toughening effect, which matches the needs of cell culture. It's notable that in the whole process of preparation and 3D printing of hydrogel scaffolds, no cross-linking agent, ultraviolet (UV), heating or other exogenous factors are involved, ensuring high biosafety and biocompatibility. After two weeks of 3D culture, millimeter-sized cell spheres are obtained. This work provides an opportunity for the development of short peptide hydrogel bioinks without exogenous factors in 3D printing, tissue engineering, tumor simulant reconstruction and other biomedical fields.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningyuan Man
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Iglesias Rando MR, Gorojovsky N, Zylberman V, Goldbaum FA, Craig PO. Improvement of Cellulomonas fimi endoglucanase CenA by multienzymatic display on a decameric structural scaffold. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12581-6. [PMID: 37212884 DOI: 10.1007/s00253-023-12581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
The development of multifunctional particles using polymeric scaffolds is an emerging technology for many nanobiotechnological applications. Here we present a system for the production of multifunctional complexes, based on the high affinity non-covalent interaction of cohesin and dockerin modules complementary fused to decameric Brucella abortus lumazine synthase (BLS) subunits, and selected target proteins, respectively. The cohesin-BLS scaffold was solubly expressed in high yield in Escherichia coli, and revealed a high thermostability. The production of multienzymatic particles using this system was evaluated using the catalytic domain of Cellulomonas fimi endoglucanase CenA recombinantly fused to a dockerin module. Coupling of the enzyme to the scaffold was highly efficient and occurred with the expected stoichiometry. The decavalent enzymatic complexes obtained showed higher cellulolytic activity and association to the substrate compared to equivalent amounts of the free enzyme. This phenomenon was dependent on the multiplicity and proximity of the enzymes coupled to the scaffold, and was attributed to an avidity effect in the polyvalent enzyme interaction with the substrate. Our results highlight the usefulness of the scaffold presented in this work for the development of multifunctional particles, and the improvement of lignocellulose degradation among other applications. KEY POINTS: • New system for multifunctional particle production using the BLS scaffold • Higher cellulolytic activity of polyvalent endoglucanase compared to the free enzyme • Amount of enzyme associated to cellulose is higher for the polyvalent endoglucanase.
Collapse
Affiliation(s)
- Matías R Iglesias Rando
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
| | - Natalia Gorojovsky
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
| | - Vanesa Zylberman
- Inmunova SA, Gral. San Martín, 25 de Mayo 1021 (CP 1650), Villa Lynch, Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Inmunova SA, Gral. San Martín, 25 de Mayo 1021 (CP 1650), Villa Lynch, Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (CP 1405), Buenos Aires, Argentina
- Centro de Rediseño e Ingeniería de Proteínas (CRIP), UNSAM Campus Miguelete, 25 de Mayo y Francia (CP 1650), Gral. San Martín, Buenos Aires, Argentina
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Effect of multimodularity and spatial organization of glycoside hydrolases on catalysis. Essays Biochem 2023; 67:629-638. [PMID: 36866571 DOI: 10.1042/ebc20220167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
The wide diversity among the carbohydrate-active enzymes (CAZymes) reflects the equally broad versatility in terms of composition and chemicals bonds found in the plant cell wall polymers on which they are active. This diversity is also expressed through the various strategies developed to circumvent the recalcitrance of these substrates to biological degradation. Glycoside hydrolases (GHs) are the most abundant of the CAZymes and are expressed as isolated catalytic modules or in association with carbohydrate-binding module (CBM), acting in synergism within complex arrays of enzymes. This multimodularity can be even more complex. The cellulosome presents a scaffold protein immobilized to the outer membrane of some microorganisms on which enzymes are grafted to prevent their dispersion and increase catalytic synergism. In polysaccharide utilization loci (PUL), GHs are also distributed across the membranes of some bacteria to co-ordinate the deconstruction of polysaccharides and the internalization of metabolizable carbohydrates. Although the study and characterization of these enzymatic activities need to take into account the entirety of this complex organization-in particular because of the dynamics involved in it-technical problems limit the present study to isolated enzymes. However, these enzymatic complexes also have a spatiotemporal organization, whose still neglected aspect must be considered. In the present review, the different levels of multimodularity that can occur in GHs will be reviewed, from its simplest forms to the most complex. In addition, attempts to characterize or study the effect on catalytic activity of the spatial organization within GHs will be addressed.
Collapse
|
6
|
Gurgel D, Vieira YA, Henriques RO, Machado R, Oechsler BF, Junior AF, de Oliveira D. A Comprehensive Review on Core‐Shell Polymeric Particles for Enzyme Immobilization. ChemistrySelect 2022. [DOI: 10.1002/slct.202202285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Danyelle Gurgel
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Yago Araujo Vieira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Ricardo Machado
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Bruno Francisco Oechsler
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Agenor Furigo Junior
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| |
Collapse
|
7
|
Tsai SL, Sun Q, Chen W. Advances in consolidated bioprocessing using synthetic cellulosomes. Curr Opin Biotechnol 2022; 78:102840. [PMID: 36356377 DOI: 10.1016/j.copbio.2022.102840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
The primary obstacle impeding the more widespread use of biomass for energy and chemical production is the absence of a low-cost technology for overcoming their recalcitrant nature. It has been shown that the overall cost can be reduced by using a 'consolidated' bioprocessing (CBP) approach, in which enzyme production, biomass hydrolysis, and sugar fermentation can be combined. Cellulosomes are enzyme complexes found in many anaerobic microorganisms that are highly efficient for biomass depolymerization. While initial efforts to display synthetic cellulosomes have been successful, the overall conversion is still low for practical use. This limitation has been partially alleviated by displaying more complex cellulsome structures either via adaptive assembly or by using synthetic consortia. Since synthetic cellulosome nanostructures have also been created using either protein nanoparticles or DNA as a scaffold, there is the potential to tether these nanostructures onto living cells in order to further enhance the overall efficiency.
Collapse
Affiliation(s)
- Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
8
|
Sulman AM, Matveeva VG, Bronstein LM. Cellulase Immobilization on Nanostructured Supports for Biomass Waste Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3796. [PMID: 36364572 PMCID: PMC9656580 DOI: 10.3390/nano12213796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanobiocatalysts, i.e., enzymes immobilized on nanostructured supports, received considerable attention because they are potential remedies to overcome shortcomings of traditional biocatalysts, such as low efficiency of mass transfer, instability during catalytic reactions, and possible deactivation. In this short review, we will analyze major aspects of immobilization of cellulase-an enzyme for cellulosic biomass waste processing-on nanostructured supports. Such supports provide high surface areas, increased enzyme loading, and a beneficial environment to enhance cellulase performance and its stability, leading to nanobiocatalysts for obtaining biofuels and value-added chemicals. Here, we will discuss such nanostructured supports as carbon nanotubes, polymer nanoparticles (NPs), nanohydrogels, nanofibers, silica NPs, hierarchical porous materials, magnetic NPs and their nanohybrids, based on publications of the last five years. The use of magnetic NPs is especially favorable due to easy separation and the nanobiocatalyst recovery for a repeated use. This review will discuss methods for cellulase immobilization, morphology of nanostructured supports, multienzyme systems as well as factors influencing the enzyme activity to achieve the highest conversion of cellulosic biowaste into fermentable sugars. We believe this review will allow for an enhanced understanding of such nanobiocatalysts and processes, allowing for the best solutions to major problems of sustainable biorefinery.
Collapse
Affiliation(s)
- Aleksandrina M. Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia
| | - Valentina G. Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia
- Regional Technological Centre, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Qamar SA, Qamar M, Bilal M, Bharagava RN, Ferreira LFR, Sher F, Iqbal HMN. Cellulose-deconstruction potential of nano-biocatalytic systems: A strategic drive from designing to sustainable applications of immobilized cellulases. Int J Biol Macromol 2021; 185:1-19. [PMID: 34146557 DOI: 10.1016/j.ijbiomac.2021.06.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Nanostructured materials along with an added value of polymers-based support carriers have gained high interest and considered ideal for enzyme immobilization. The recently emerged nanoscience interface in the form of nanostructured materials combined with immobilized-enzyme-based bio-catalysis has now become research and development frontiers in advance and applied bio-catalysis engineering. With the involvement of nanoscience, various polymers have been thoroughly developed and exploited to nanostructured engineer constructs as ideal support carriers/matrices. Such nanotechnologically engineered support carriers/matrix possesses unique structural, physicochemical, and functional attributes which equilibrate principal factors and strengthen the biocatalysts efficacy for multipurpose applications. In addition, nano-supported catalysts are potential alternatives that can outstrip several limitations of conventional biocatalysts, such as reduced catalytic efficacy and turnover, low mass transfer efficiency, instability during the reaction, and most importantly, partial, or complete inhibition/deactivation. In this context, engineering robust and highly efficient biocatalysts is an industrially relevant prerequisite. This review comprehensively covered various biopolymers and nanostructured materials, including silica, hybrid nanoflower, nanotubes or nanofibers, nanomembranes, graphene oxide nanoparticles, metal-oxide frameworks, and magnetic nanoparticles as robust matrices for cellulase immobilization. The work is further enriched by spotlighting applied and industrially relevant considerations of nano-immobilized cellulases. For instance, owing to the cellulose-deconstruction features of nano-immobilized cellulases, the applications like lignocellulosic biomass conversion into industrially useful products or biofuels, improved paper sheet density and pulp beat in paper and pulp industry, fruit juice clarification in food industry are evident examples of cellulases, thereof are discussed in this work.
Collapse
Affiliation(s)
- Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, U.P., India
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Tiradentes University, Farolândia, Aracaju, SE 49032-490, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
10
|
Minamihata K, Tanaka Y, Santoso P, Goto M, Kozome D, Taira T, Kamiya N. Orthogonal Enzymatic Conjugation Reactions Create Chitin Binding Domain Grafted Chitinase Polymers with Enhanced Antifungal Activity. Bioconjug Chem 2021; 32:1688-1698. [PMID: 34251809 DOI: 10.1021/acs.bioconjchem.1c00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymatic reaction offers site-specific conjugation of protein units to form protein conjugates or protein polymers with intrinsic functions. Herein, we report horseradish peroxidase (HRP)- and microbial transglutaminase (MTG)-catalyzed orthogonal conjugation reactions to create antifungal protein polymers composed of Pteris ryukyuensis chitinase-A (ChiA) and its two domains, catalytic domain, CatD, and chitin-binding domain, LysM2. We engineered the ChiA and CatD by introducing a peptide tag containing tyrosine (Y-tag) at N-termini and a peptide tag containing lysine and tyrosine (KY-tag) at C-termini to construct Y-ChiA-KY and Y-CatD-KY. Also, LysM2 with Y-tag and KY-tag (Y-LysM2-KY) or with a glutamine-containing peptide tag (Q-tag) (LysM2-Q) were constructed. The proteins with Y-tag and KY-tag were efficiently polymerized by HRP reaction through the formation of dityrosine bonds at the tyrosine residues in the peptide tags. The Y-CatD-KY polymer was further treated by MTG to orthogonally graft LysM2-Q to the KY-tag via isopeptide formation between the side chains of the glutamine and lysine residues in the peptide tags to form LysM2-grafted CatD polymer. The LysM2-grafted CatD polymer exhibited significantly higher antifungal activity than the homopolymer of Y-ChiA-KY and the random copolymer of Y-CatD-KY and Y-LysM2-KY, demonstrating that the structural differences of artificial chitinase polymers have a significant impact on the antifungal activity. This strategy of polymerization and grafting reaction of protein can contribute to the further research and development of functional protein polymers for specific applications in various fields in biotechnology.
Collapse
Affiliation(s)
- Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Pugoh Santoso
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Dan Kozome
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Toki Taira
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Ren S, Chen R, Wu Z, Su S, Hou J, Yuan Y. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO 2 conversion. Colloids Surf B Biointerfaces 2021; 204:111779. [PMID: 33901810 DOI: 10.1016/j.colsurfb.2021.111779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.
Collapse
Affiliation(s)
- Sizhu Ren
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China.
| | - Ruixue Chen
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin, No 29, 13th, Avenue, 300457, Tianjin, PR China
| | - Zhangfei Wu
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China
| | - Shan Su
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Jiaxi Hou
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Yanlin Yuan
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China.
| |
Collapse
|
12
|
Glucan Conversion and Membrane Recovery of Biomimetic Cellulosomes During Lignocellulosic Biomass Hydrolysis. Appl Biochem Biotechnol 2021; 193:2830-2842. [PMID: 33871766 DOI: 10.1007/s12010-021-03569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Enzyme immobilization has been identified as one way to recycle enzymes and reduce processing costs during enzymatic hydrolysis of lignocellulosic materials. However, most immobilization methods have not been attractive to lignocellulosic processing plants. In this study, cellulase enzymes were attached to a copolymer of glycidyl methacrylate (GMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) to make polymer-enzyme conjugates (PECs) and facilitate recovery using a 50-kDa molecular weight cutoff membrane. Glucan conversion during biomass hydrolysis was investigated using new PECs and PECs recovered after an initial hydrolysis stage. Enzyme immobilization on PECs did not reduce effectiveness during the initial hydrolysis. Temperature and pH showed similar effects on free enzymes and PECs. PECs facilitated higher conversion rates than free enzymes at high biomass loadings. Recovered PECs were used to achieve approximately 100% glucan conversion in a subsequent hydrolysis step when supplemented with 40% of the free enzyme used in the first stage. The combination of PECs and membrane recovery has the potential to reduce hydrolysis cost during cellulosic bioprocessing.
Collapse
|
13
|
Zhu Y, Han J, Wu J, Li Y, Wang L, Mao Y, Wang Y. A two-step method for the synthesis of magnetic immobilized cellulase with outstanding thermal stability and reusability. NEW J CHEM 2021. [DOI: 10.1039/d0nj06037b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellulase electrostatically adsorbed on the surface of Fe3O4@C magnetic nanoparticles was embedded with silica to form the immobilized cellulase. The stability and reusability were greatly improved, while the synthesis process was simple.
Collapse
Affiliation(s)
- Yan Zhu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Juan Han
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yuanyuan Li
- Jingjiang College
- Jiangsu University
- Zhenjiang
- China
| | - Lei Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yanli Mao
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology
- Henan University of Urban Construction
- Pingdingshan
- China
| | - Yun Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| |
Collapse
|
14
|
Zhang L, Manley OM, Ma D, Yin Y, Makris TM, Wang Q. Enhanced P450 fatty acid decarboxylase catalysis by glucose oxidase coupling and co-assembly for biofuel generation. BIORESOURCE TECHNOLOGY 2020; 311:123538. [PMID: 32485602 DOI: 10.1016/j.biortech.2020.123538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 OleT is a fatty acid decarboxylase that uses hydrogen peroxide (H2O2) to catalyze the production of terminal alkenes, which are industrially important chemicals with biofuel and synthetic applications. Despite its requirement for large turnover levels, high concentrations of H2O2 may cause heme group degradation, diminishing enzymatic activity and limiting broad application for synthesis. Here, we report an artificial enzyme cascade composed of glucose oxidase (GOx) and OleTSA from Staphylococcus aureus for efficient terminal alkene production. By adjusting the ratio of GOx to OleTSA, the GOx-based tandem catalysis shows significantly improved product yield compared to the H2O2 injection method. Moreover, the co-assembly of the GOx/OleTSA enzymes with a polymer, forming polymer-dual enzymes nanoparticles, displays improved activity compared to the free enzyme. This dual strategy provides a simple and efficient system to transform a naturally abundant feedstock to industrially important chemicals.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Olivia M Manley
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Dumei Ma
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
15
|
Dadwal A, Sharma S, Satyanarayana T. Progress in Ameliorating Beneficial Characteristics of Microbial Cellulases by Genetic Engineering Approaches for Cellulose Saccharification. Front Microbiol 2020; 11:1387. [PMID: 32670240 PMCID: PMC7327088 DOI: 10.3389/fmicb.2020.01387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Lignocellulosic biomass is a renewable and sustainable energy source. Cellulases are the enzymes that cleave β-1, 4-glycosidic linkages in cellulose to liberate sugars that can be fermented to ethanol, butanol, and other products. Low enzyme activity and yield, and thermostability are, however, some of the limitations posing hurdles in saccharification of lignocellulosic residues. Recent advancements in synthetic and systems biology have generated immense interest in metabolic and genetic engineering that has led to the development of sustainable technology for saccharification of lignocellulosics in the last couple of decades. There have been several attempts in applying genetic engineering in the production of a repertoire of cellulases at a low cost with a high biomass saccharification. A diverse range of cellulases are produced by different microbes, some of which are being engineered to evolve robust cellulases. This review summarizes various successful genetic engineering strategies employed for improving cellulase kinetics and cellulolytic efficiency.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
16
|
Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110768. [DOI: 10.1016/j.msec.2020.110768] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
|