2
|
Saran R, Piccolo KA, He Y, Kang Y, Huang PJJ, Wei C, Chen D, Dieckmann T, Liu J. Thioflavin T fluorescence and NMR spectroscopy suggesting a non-G-quadruplex structure for a sodium binding aptamer embedded in DNAzymes. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, a Na+-binding aptamer was reported to be embedded in a few RNA-cleaving DNAzymes, including NaA43, Ce13d, and NaH1. The Na+ aptamer consists of multiple GG stretches, which is a prerequisite for the formation of G-quadruplex (G4) structures. These DNAzymes require Na+ for activity but show no activity in the presence of K+ or other metal ions. Given that DNA can selectively bind K+ by forming a G4 structure, this work aims to answer whether this Na+ aptamer also uses a G4 to bind Na+. Through comparative ThT fluorescence spectrometry studies, while a control G4 DNA exhibited notable fluorescence enhancement up to 5 mM K+ with a Kd of 0.28 ± 0.06 mM, the Ce13d DNAzyme fluorescence was negligibly perturbed with similar concentrations of K+. Opposed to this, Ce13d displayed specific remarkable fluorescence decrease with low millimolar concentrations of Na+. NMR experiments at two different pH values suggest that Ce13d adopts a significantly different conformation or equilibrium of conformations in the presence of Na+ versus K+ and has a more stable structure in the presence of Na+. Additionally, absence of characteristic G4 peaks in one-dimensional 1H NMR suggest that G4 is not responsible for the Na+ binding. This hypothesis is confirmed by the absence of characteristic peaks in the CD spectra of this sequence. Therefore, we concluded that the aptamer must be selective for Na+ and that it binds Na+ using a structural element that does not contain G4.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kyle A. Piccolo
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yanping He
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, P.R. China
| | - Yongqiang Kang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Chunying Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, P.R. China
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Li Y, Liu J. Highly Specific Recognition of Guanosine Using Engineered Base-Excised Aptamers. Chemistry 2020; 26:13644-13651. [PMID: 32700427 DOI: 10.1002/chem.202001835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Purines and their derivatives are highly important molecules in biology for nucleic acid synthesis, energy storage, and signaling. Although many DNA aptamers have been obtained for binding adenine derivatives such as adenosine, adenosine monophosphate, and adenosine triphosphate, success for the specific binding of guanosine has been limited. Instead of performing new aptamer selections, we report herein a base-excision strategy to engineer existing aptamers to bind guanosine. Both a Na+ -binding aptamer and the classical adenosine aptamer have been manipulated as base-excising scaffolds. A total of seven guanosine aptamers were designed, of which the G16-deleted Na+ aptamer showed the highest bindng specificity and affinity for guanosine with an apparent dissociation constant of 0.78 mm. Single monophosphate difference in the target molecule was also recognizable. The generality of both the aptamer scaffold and excised site were systematically studied. Overall, this work provides a few guanosine binding aptamers by using a non-SELEX method. It also provides deeper insights into the engineering of aptamers for molecular recognition.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|