1
|
Zhao J, Han X. Investigation of artificial cells containing the Par system for bacterial plasmid segregation and inheritance mimicry. Nat Commun 2024; 15:4956. [PMID: 38858376 PMCID: PMC11164925 DOI: 10.1038/s41467-024-49412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
A crucial step in life processes is the transfer of accurate and correct genetic material to offspring. During the construction of autonomous artificial cells, a very important step is the inheritance of genetic information in divided artificial cells. The ParMRC system, as one of the most representative systems for DNA segregation in bacteria, can be purified and reconstituted into GUVs to form artificial cells. In this study, we demonstrate that the eGFP gene is segregated into two poles by a ParM filament with ParR as the intermediate linker to bind ParM and parC-eGFP DNA in artificial cells. After the ParM filament splits, the cells are externally induced to divide into two daughter cells that contain parC-eGFP DNA by osmotic pressure and laser irradiation. Using a PURE system, we translate eGFP DNA into enhanced green fluorescent proteins in daughter cells, and bacterial plasmid segregation and inheritance are successfully mimicked in artificial cells. Our results could lead to the construction of more sophisticated artificial cells that can reproduce with genetic information.
Collapse
Affiliation(s)
- Jingjing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
2
|
Ueno H, Sawada H, Soga N, Sano M, Nara S, Tabata KV, Su’etsugu M, Noji H. Amplification of over 100 kbp DNA from Single Template Molecules in Femtoliter Droplets. ACS Synth Biol 2021; 10:2179-2186. [PMID: 34406762 DOI: 10.1021/acssynbio.0c00584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reconstitution of the DNA amplification system in microcompartments is the primary step toward artificial cell construction through a bottom-up approach. However, amplification of >100 kbp DNA in micrometer-sized reactors has not yet been achieved. Here, implementing a fully reconstituted replisome of Escherichia coli in micrometer-sized water-in-oil droplets, we developed the in-droplet replication cycle reaction (RCR) system. For a 16 kbp template DNA, the in-droplet RCR system yielded positive RCR signals with a high success rate (82%) for the amplification from single molecule template DNA. The success rate for a 208 kbp template DNA was evidently lower (23%). This study establishes a platform for genome-sized DNA amplification from a single copy of template DNA with the potential to build more complex artificial cell systems comprising a large number of genes.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroki Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Naoki Soga
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Mio Sano
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Seia Nara
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Kazuhito V. Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Masayuki Su’etsugu
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Olivi L, Berger M, Creyghton RNP, De Franceschi N, Dekker C, Mulder BM, Claassens NJ, Ten Wolde PR, van der Oost J. Towards a synthetic cell cycle. Nat Commun 2021; 12:4531. [PMID: 34312383 PMCID: PMC8313558 DOI: 10.1038/s41467-021-24772-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Recent developments in synthetic biology may bring the bottom-up generation of a synthetic cell within reach. A key feature of a living synthetic cell is a functional cell cycle, in which DNA replication and segregation as well as cell growth and division are well integrated. Here, we describe different approaches to recreate these processes in a synthetic cell, based on natural systems and/or synthetic alternatives. Although some individual machineries have recently been established, their integration and control in a synthetic cell cycle remain to be addressed. In this Perspective, we discuss potential paths towards an integrated synthetic cell cycle.
Collapse
Affiliation(s)
- Lorenzo Olivi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Nicola De Franceschi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Becker K, Meyer A, Roberts TM, Panke S. Plasmid replication based on the T7 origin of replication requires a T7 RNAP variant and inactivation of ribonuclease H. Nucleic Acids Res 2021; 49:8189-8198. [PMID: 34255845 PMCID: PMC8373140 DOI: 10.1093/nar/gkab596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 01/09/2023] Open
Abstract
T7 RNA polymerase (RNAP) is a valuable tool in biotechnology, basic research and synthetic biology due to its robust, efficient and selective transcription of genes. Here, we expand the scope of T7 RNAP to include plasmid replication. We present a novel type of plasmid, termed T7 ori plasmids that replicate, in an engineered Escherichia coli, with a T7 phage origin as the sole origin of replication. We find that while the T7 replication proteins; T7 DNA polymerase, T7 single-stranded binding proteins and T7 helicase-primase are dispensable for replication, T7 RNAP is required, although dependent on a T7 RNAP variant with reduced activity. We also find that T7 RNAP-dependent replication of T7 ori plasmids requires the inactivation of cellular ribonuclease H. We show that the system is portable among different plasmid architectures and ribonuclease H-inactivated E. coli strains. Finally, we find that the copy number of T7 ori plasmids can be tuned based on the induction level of RNAP. Altogether, this study assists in the choice of an optimal genetic tool by providing a novel plasmid that requires T7 RNAP for replication.
Collapse
Affiliation(s)
- Katja Becker
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Andreas Meyer
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland.,FGen GmbH, Basel 4057, Switzerland
| | | | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| |
Collapse
|
5
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Hürtgen D, Mascarenhas J, Heymann M, Murray SM, Schwille P, Sourjik V. Reconstitution and Coupling of DNA Replication and Segregation in a Biomimetic System. Chembiochem 2019; 20:2633-2642. [PMID: 31344304 PMCID: PMC6899551 DOI: 10.1002/cbic.201900299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/20/2019] [Indexed: 12/30/2022]
Abstract
A biomimetic system capable of replication and segregation of genetic material constitutes an essential component for the future design of a minimal synthetic cell. Here we have used the simple T7 bacteriophage system and the plasmid-derived ParMRC system to establish in vitro DNA replication and DNA segregation, respectively. These processes were incorporated into biomimetic compartments providing an enclosed reaction space. The functional lifetime of the encapsulated segregation system could be prolonged by equipping it with ATP-regenerating and oxygen-scavenging systems. Finally, we showed that DNA replication and segregation processes could be coupled in vitro by using condensed DNA nanoparticles resulting from DNA replication. ParM spindles extended over tens of micrometers and could thus be used for segregation in compartments that are significantly longer than bacterial cell size. Overall, this work demonstrates the successful bottom-up assembly and coupling of molecular machines that mediate replication and segregation, thus providing an important step towards the development of a fully functional minimal cell.
Collapse
Affiliation(s)
- Daniel Hürtgen
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| | - Judita Mascarenhas
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| | - Michael Heymann
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Seán M. Murray
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| | - Petra Schwille
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| |
Collapse
|