1
|
Grieco A, Ruiz-Fresneda MA, Gómez-Mulas A, Pacheco-García JL, Quereda-Moraleda I, Pey AL, Martin-Garcia JM. Structural dynamics at the active site of the cancer-associated flavoenzyme NQO1 probed by chemical modification with PMSF. FEBS Lett 2023; 597:2687-2698. [PMID: 37726177 DOI: 10.1002/1873-3468.14738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
A large conformational heterogeneity of human NAD(P)H:quinone oxidoreductase 1 (NQO1), a flavoprotein associated with various human diseases, has been observed to occur in the catalytic site of the enzyme. Here, we report the X-ray structure of NQO1 with phenylmethylsulfonyl fluoride (PMSF) at 1.6 Å resolution. Activity assays confirmed that, despite being covalently bound to the Tyr128 residue at the catalytic site, PMSF did not abolish NQO1 activity. This may indicate that the PMSF molecule does not reduce the high flexibility of Tyr128, thus allowing NADH and DCPIP substrates to bind to the enzyme. Our results show that targeting Tyr128, a key residue in NQO1 function, with small covalently bound molecules could possibly not be a good drug discovery strategy to inhibit this enzyme.
Collapse
Affiliation(s)
- Alice Grieco
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | | | | | | | - Isabel Quereda-Moraleda
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
- Department of Physical Chemistry, Unit of Excellence in Applied Chemistry to Biomedicine and Environment, and Institute of Biotechnology, University of Granada, Granada, Spain
| | - Jose M Martin-Garcia
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
2
|
Doppler D, Sonker M, Egatz-Gomez A, Grieco A, Zaare S, Jernigan R, Meza-Aguilar JD, Rabbani MT, Manna A, Alvarez RC, Karpos K, Cruz Villarreal J, Nelson G, Yang JH, Carrion J, Morin K, Ketawala GK, Pey AL, Ruiz-Fresneda MA, Pacheco-Garcia JL, Hermoso JA, Nazari R, Sierra R, Hunter MS, Batyuk A, Kupitz CJ, Sublett RE, Lisova S, Mariani V, Boutet S, Fromme R, Grant TD, Botha S, Fromme P, Kirian RA, Martin-Garcia JM, Ros A. Modular droplet injector for sample conservation providing new structural insight for the conformational heterogeneity in the disease-associated NQO1 enzyme. LAB ON A CHIP 2023; 23:3016-3033. [PMID: 37294576 PMCID: PMC10503405 DOI: 10.1039/d3lc00176h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room-temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.
Collapse
Affiliation(s)
- Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Alice Grieco
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Sahba Zaare
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Rebecca Jernigan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jose Domingo Meza-Aguilar
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Mohammad T Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Abhik Manna
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Roberto C Alvarez
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Garrett Nelson
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jay-How Yang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jackson Carrion
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Katherine Morin
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Gihan K Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Miguel Angel Ruiz-Fresneda
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Raymond Sierra
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Mark S Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Christopher J Kupitz
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Robert E Sublett
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Stella Lisova
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Valerio Mariani
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Richard A Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| |
Collapse
|
3
|
Das AP, Saini S, Tyagi S, Chaudhary N, Agarwal SM. Elucidation of Increased Cervical Cancer Risk Due to Polymorphisms in XRCC1 (R399Q and R194W), ERCC5 (D1104H), and NQO1 (P187S). Reprod Sci 2023; 30:1118-1132. [PMID: 36195778 DOI: 10.1007/s43032-022-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/22/2022] [Indexed: 10/10/2022]
Abstract
Genetic variations like single nucleotide polymorphisms (SNPs) are associated with cervical carcinogenesis. In this study, SNPs have been identified that contribute toward changes in the function and stability of the proteins and show association with cervical cancer. Initially, literature mining identified 114 protein-coding polymorphisms with population-based evidence in cervical cancer. Subsequently, the functional assessment was performed using sequence-dependent tools, and thereafter, protein stability was analyzed using sequence and structural data. Twenty-three non-synonymous SNPs (nsSNPs) found to be damaging and destabilizing were then analyzed to check their risk association at the population level. The meta-analysis indicated that polymorphisms in DNA damage repair genes XRCC1 (rs25487 and rs1799782), ERCC5 (rs17655), and oxidative stress-related gene NQO1 (rs1800566) are significantly associated with increased cervical cancer risk. The XRCC1 rs25487 and rs1799782 polymorphisms showed the highest risk of cervical cancer in the homozygous model having odds ratio (OR) = 1.85, 95% confidence interval (CI) = 1.17-2.92, p = 0.01, and recessive model with OR = 1.81, 95% CI = 1.01-3.24, and p = 0.04 respectively. Similarly, rs17655 polymorphism of ERCC5 and rs1800566 polymorphism of NQO1 showed the highest pooled OR in the homozygous (OR = 1.70, 95% CI = 1.32-2.19, p = 0.00004) and heterozygous model (OR = 1.3, 95% CI = 1.06-1.58, p = 0.01) respectively. Thus, in this study, a comprehensive collection of nsSNPs was collated and assessed, leading to the identification of polymorphisms in DNA damage repair and oxidative stress-related genes, that destabilize the protein and shows increased risk associated with cervical cancer.
Collapse
Affiliation(s)
- Agneesh Pratim Das
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, 201301, Uttar Pradesh, India
| | - Sandeep Saini
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, 201301, Uttar Pradesh, India
| | - Shrishty Tyagi
- Multanimal Modi College, CCS University, Modinagar, 201204, India
| | - Nisha Chaudhary
- Multanimal Modi College, CCS University, Modinagar, 201204, India
| | - Subhash Mohan Agarwal
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, 201301, Uttar Pradesh, India.
| |
Collapse
|
4
|
Phenotypic Modulation of Cancer-Associated Antioxidant NQO1 Activity by Post-Translational Modifications and the Natural Diversity of the Human Genome. Antioxidants (Basel) 2023; 12:antiox12020379. [PMID: 36829939 PMCID: PMC9952366 DOI: 10.3390/antiox12020379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Human NAD(P)H:quinone oxidoreductase 1 (hNQO1) is a multifunctional and antioxidant stress protein whose expression is controlled by the Nrf2 signaling pathway. hNQO1 dysregulation is associated with cancer and neurological disorders. Recent works have shown that its activity is also modulated by different post-translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, and these may synergize with naturally-occurring and inactivating polymorphisms and mutations. Herein, I describe recent advances in the study of the effect of PTMs and genetic variations on the structure and function of hNQO1 and their relationship with disease development in different genetic backgrounds, as well as the physiological roles of these modifications. I pay particular attention to the long-range allosteric effects exerted by PTMs and natural variation on the multiple functions of hNQO1.
Collapse
|
5
|
Pacheco-Garcia JL, Anoz-Carbonell E, Loginov DS, Vankova P, Salido E, Man P, Medina M, Palomino-Morales R, Pey AL. Different phenotypic outcome due to site-specific phosphorylation in the cancer-associated NQO1 enzyme studied by phosphomimetic mutations. Arch Biochem Biophys 2022; 729:109392. [PMID: 36096178 DOI: 10.1016/j.abb.2022.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Protein phosphorylation is a common phenomenon in human flavoproteins although the functional consequences of this site-specific modification are largely unknown. Here, we evaluated the effects of site-specific phosphorylation (using phosphomimetic mutations at sites S40, S82 and T128) on multiple functional aspects as well as in the structural stability of the antioxidant and disease-associated human flavoprotein NQO1 using biophysical and biochemical methods. In vitro biophysical studies revealed effects of phosphorylation at different sites such as decreased binding affinity for FAD and structural stability of its binding site (S82), conformational stability (S40 and S82) and reduced catalytic efficiency and functional cooperativity (T128). Local stability measurements by H/D exchange in different ligation states provided structural insight into these effects. Transfection of eukaryotic cells showed that phosphorylation at sites S40 and S82 may reduce steady-levels of NQO1 protein by enhanced proteasome-induced degradation. We show that site-specific phosphorylation of human NQO1 may cause pleiotropic and counterintuitive effects on this multifunctional protein with potential implications for its relationships with human disease. Our approach allows to establish relationships between site-specific phosphorylation, functional and structural stability effects in vitro and inside cells paving the way for more detailed analyses of phosphorylation at the flavoproteome scale.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Cellular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Dmitry S Loginov
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Pavla Vankova
- Institute of Biotechnology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Cellular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Rogelio Palomino-Morales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences and Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
6
|
White SA, Christofferson AJ, Grainger AI, Day MA, Jarrom D, Graziano AE, Searle PF, Hyde EI. The 3D-structure, kinetics and dynamics of the E. coli nitroreductase NfsA with NADP + provide glimpses of its catalytic mechanism. FEBS Lett 2022; 596:2425-2440. [PMID: 35648111 PMCID: PMC9912195 DOI: 10.1002/1873-3468.14413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Nitroreductases activate nitroaromatic antibiotics and cancer prodrugs to cytotoxic hydroxylamines and reduce quinones to quinols. Using steady-state and stopped-flow kinetics, we show that the Escherichia coli nitroreductase NfsA is 20-50 fold more active with NADPH than with NADH and that product release may be rate-limiting. The crystal structure of NfsA with NADP+ shows that a mobile loop forms a phosphate-binding pocket. The nicotinamide ring and nicotinamide ribose are mobile, as confirmed in molecular dynamics (MD) simulations. We present a model of NADPH bound to NfsA. Only one NADP+ is seen bound to the NfsA dimers, and MD simulations show that binding of a second NADP(H) cofactor is unfavourable, suggesting that NfsA and other members of this protein superfamily may have a half-of-sites mechanism.
Collapse
Affiliation(s)
| | | | - Alastair I. Grainger
- School of BiosciencesUniversity of BirminghamUK
- Present address:
School of Life and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - Martin A. Day
- School of BiosciencesUniversity of BirminghamUK
- Institute for Cancer and Genomic SciencesUniversity of BirminghamUK
- Present address:
DurhamUK
| | - David Jarrom
- School of BiosciencesUniversity of BirminghamUK
- Present address:
Health Technology WalesCardiffCF10 4PLUK
| | - Antonio E. Graziano
- School of BiosciencesUniversity of BirminghamUK
- Present address:
Carlsberg Marstons Brewing CompanyNorthamptonNN1 1PZUK
| | - Peter F. Searle
- Institute for Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Eva I. Hyde
- School of BiosciencesUniversity of BirminghamUK
| |
Collapse
|
7
|
Pacheco-Garcia JL, Loginov DS, Anoz-Carbonell E, Vankova P, Palomino-Morales R, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations. Antioxidants (Basel) 2022; 11:antiox11061110. [PMID: 35740007 PMCID: PMC9219786 DOI: 10.3390/antiox11061110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Allosterism is a common phenomenon in protein biochemistry that allows rapid regulation of protein stability; dynamics and function. However, the mechanisms by which allosterism occurs (by mutations or post-translational modifications (PTMs)) may be complex, particularly due to long-range propagation of the perturbation across protein structures. In this work, we have investigated allosteric communication in the multifunctional, cancer-related and antioxidant protein NQO1 by mutating several fully buried leucine residues (L7, L10 and L30) to smaller residues (V, A and G) at sites in the N-terminal domain. In almost all cases, mutated residues were not close to the FAD or the active site. Mutations L→G strongly compromised conformational stability and solubility, and L30A and L30V also notably decreased solubility. The mutation L10A, closer to the FAD binding site, severely decreased FAD binding affinity (≈20 fold vs. WT) through long-range and context-dependent effects. Using a combination of experimental and computational analyses, we show that most of the effects are found in the apo state of the protein, in contrast to other common polymorphisms and PTMs previously characterized in NQO1. The integrated study presented here is a first step towards a detailed structural–functional mapping of the mutational landscape of NQO1, a multifunctional and redox signaling protein of high biomedical relevance.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (J.L.P.-G.); (A.L.P.); Tel.: +34-958243173 (A.L.P.)
| | - Dmitry S. Loginov
- Institute of Microbiology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic; (D.S.L.); (P.M.)
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-C.); (M.M.)
| | - Pavla Vankova
- Institute of Biotechnology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic;
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Rogelio Palomino-Morales
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias y Centro de Investigaciones Biomédicas (CIBM), Universidad de Granada, 18016 Granada, Spain;
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320 Tenerife, Spain;
| | - Petr Man
- Institute of Microbiology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic; (D.S.L.); (P.M.)
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-C.); (M.M.)
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (J.L.P.-G.); (A.L.P.); Tel.: +34-958243173 (A.L.P.)
| |
Collapse
|
8
|
Targeting HIF-1α Function in Cancer through the Chaperone Action of NQO1: Implications of Genetic Diversity of NQO1. J Pers Med 2022; 12:jpm12050747. [PMID: 35629169 PMCID: PMC9146583 DOI: 10.3390/jpm12050747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
HIF-1α is a master regulator of oxygen homeostasis involved in different stages of cancer development. Thus, HIF-1α inhibition represents an interesting target for anti-cancer therapy. It was recently shown that the HIF-1α interaction with NQO1 inhibits proteasomal degradation of the former, thus suggesting that targeting the stability and/or function of NQO1 could lead to the destabilization of HIF-1α as a therapeutic approach. Since the molecular interactions of NQO1 with HIF-1α are beginning to be unraveled, in this review we discuss: (1) Structure–function relationships of HIF-1α; (2) our current knowledge on the intracellular functions and stability of NQO1; (3) the pharmacological modulation of NQO1 by small ligands regarding function and stability; (4) the potential effects of genetic variability of NQO1 in HIF-1α levels and function; (5) the molecular determinants of NQO1 as a chaperone of many different proteins including cancer-associated factors such as HIF-1α, p53 and p73α. This knowledge is then further discussed in the context of potentially targeting the intracellular stability of HIF-1α by acting on its chaperone, NQO1. This could result in novel anti-cancer therapies, always considering that the substantial genetic variability in NQO1 would likely result in different phenotypic responses among individuals.
Collapse
|
9
|
Shreevatsa B, Dharmashekara C, Swamy VH, Gowda MV, Achar RR, Kameshwar VH, Thimmulappa RK, Syed A, Elgorban AM, Al-Rejaie SS, Ortega-Castro J, Frau J, Flores-Holguín N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Virtual Screening for Potential Phytobioactives as Therapeutic Leads to Inhibit NQO1 for Selective Anticancer Therapy. Molecules 2021; 26:6863. [PMID: 34833955 PMCID: PMC8622762 DOI: 10.3390/molecules26226863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
NAD(P)H:quinone acceptor oxidoreductase-1 (NQO1) is a ubiquitous flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory two-electron reductions of quinones, quinonimines, nitroaromatics, and azo dyes. NQO1 is a multifunctional antioxidant enzyme whose expression and deletion are linked to reduced and increased oxidative stress susceptibilities. NQO1 acts as both a tumor suppressor and tumor promoter; thus, the inhibition of NQO1 results in less tumor burden. In addition, the high expression of NQO1 is associated with a shorter survival time of cancer patients. Inhibiting NQO1 also enables certain anticancer agents to evade the detoxification process. In this study, a series of phytobioactives were screened based on their chemical classes such as coumarins, flavonoids, and triterpenoids for their action on NQO1. The in silico evaluations were conducted using PyRx virtual screening tools, where the flavone compound, Orientin showed a better binding affinity score of -8.18 when compared with standard inhibitor Dicumarol with favorable ADME properties. An MD simulation study found that the Orientin binding to NQO1 away from the substrate-binding site induces a potential conformational change in the substrate-binding site, thereby inhibiting substrate accessibility towards the FAD-binding domain. Furthermore, with this computational approach we are offering a scope for validation of the new therapeutic components for their in vitro and in vivo efficacy against NQO1.
Collapse
Affiliation(s)
- Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (B.S.); (C.D.)
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (B.S.); (C.D.)
| | - Vikas Halasumane Swamy
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.H.S.); (M.V.G.)
| | - Meghana V. Gowda
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.H.S.); (M.V.G.)
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.H.S.); (M.V.G.)
| | - Vivek Hamse Kameshwar
- School of Natural Science, Adichunchanagiri University, B.G. Nagara, Nagamangala, Mandya 571448, India;
| | - Rajesh Kumar Thimmulappa
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.)
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia;
| | - Joaquín Ortega-Castro
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Malllorca, Spain; (J.O.-C.); (J.F.)
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Malllorca, Spain; (J.O.-C.); (J.F.)
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (B.S.); (C.D.)
| | - Shiva Prasad Kollur
- Department of Sciences, Mysuru Campus, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru 570026, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| |
Collapse
|
10
|
Pacheco-Garcia JL, Anoz-Carbonell E, Vankova P, Kannan A, Palomino-Morales R, Mesa-Torres N, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Structural basis of the pleiotropic and specific phenotypic consequences of missense mutations in the multifunctional NAD(P)H:quinone oxidoreductase 1 and their pharmacological rescue. Redox Biol 2021; 46:102112. [PMID: 34537677 PMCID: PMC8455868 DOI: 10.1016/j.redox.2021.102112] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 10/31/2022] Open
Abstract
The multifunctional nature of human flavoproteins is critically linked to their ability to populate multiple conformational states. Ligand binding, post-translational modifications and disease-associated mutations can reshape this functional landscape, although the structure-function relationships of these effects are not well understood. Herein, we characterized the structural and functional consequences of two mutations (the cancer-associated P187S and the phosphomimetic S82D) on different ligation states which are relevant to flavin binding, intracellular stability and catalysis of the disease-associated NQO1 flavoprotein. We found that these mutations affected the stability locally and their effects propagated differently through the protein structure depending both on the nature of the mutation and the ligand bound, showing directional preference from the mutated site and leading to specific phenotypic manifestations in different functional traits (FAD binding, catalysis and inhibition, intracellular stability and pharmacological response to ligands). Our study thus supports that pleitropic effects of disease-causing mutations and phosphorylation events on human flavoproteins may be caused by long-range structural propagation of stability effects to different functional sites that depend on the ligation-state and site-specific perturbations. Our approach can be of general application to investigate these pleiotropic effects at the flavoproteome scale in the absence of high-resolution structural models.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Pavla Vankova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 2, 128 43, Czech Republic
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, 600036, India
| | - Rogelio Palomino-Morales
- Departmento de Bioquímica y Biología Molecular I, Facultad de Ciencias y Centro de Investigaciones Biomédicas (CIBM), Universidad de Granada, Granada, Spain
| | - Noel Mesa-Torres
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, 600036, India
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
11
|
Martínez AL, Brea J, Domínguez E, Varela MJ, Cimadevila M, Allegue C, Cruz R, Monroy X, Merlos M, Burgueño J, Carracedo Á, Loza MI. Identification of Novel Regulators of Zalcitabine-Induced Neuropathic Pain. ACS Chem Neurosci 2021; 12:2619-2628. [PMID: 34184863 DOI: 10.1021/acschemneuro.1c00129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the foremost adverse effects that worsens quality of life for patients undergoing an antiretroviral treatment. Currently, there are no effective analgesics for relieving it; thus, there is an urgent need to develop novel treatments for neuropathic pain. Previously, we described and validated F11 cells as a model of DRG (dorsal root ganglia) neurons. In the current work, we employed F11 cells to identify regulators of antiretroviral-induced neuropathic pain combining functional and transcriptomic analysis. The antiretroviral zalcitabine (ddC) increased the excitability of differentiated F11 cells associated with calcium signaling without morphological changes in the neuronal phenotype, mimicking the observed increase of painful signaling in patients suffering from antiretroviral-induced neuropathic pain. Employing RNA sequencing, we observed that zalcitabine treatment upregulated genes related with oxidative stress and calcium homeostasis. The functional impact of the transcriptomic changes was explored, finding that the exposure to zalcitabine significantly increased intracellular oxidative stress and reduced store-operated calcium entry (SOCE). Because the functional and transcriptomic evidence points toward fundamental changes in calcium signaling and oxidative stress upon zalcitabine exposure, we identified that NAD(P)H quinone dehydrogenase and the sarcoplasmic/endoplasmic reticulum calcium ATPase 3 were involved in zalcitabine-induced hyperexcitability of F11 cells. Overexpression of those genes increases the calcium-elicited hyperexcitability response and reduces SOCE, as well as increases intracellular ROS levels. These data do not only mimic the effects of zalcitabine but also highlight the relevance of oxidative stress and of calcium-mediated signaling in antiretroviral-induced hyperexcitability of sensory neurons, shedding light on new therapeutic targets for antiviral-induced neuropathic pain.
Collapse
Affiliation(s)
- Antón L. Martínez
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eduardo Domínguez
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María J. Varela
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marta Cimadevila
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Catarina Allegue
- Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xavier Monroy
- WeLab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Manuel Merlos
- WeLab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Javier Burgueño
- WeLab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, IDIS, SERGAS, 15706 Santiago de Compostela, Spain
| | - María I. Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Anoz-Carbonell E, Timson DJ, Pey AL, Medina M. The Catalytic Cycle of the Antioxidant and Cancer-Associated Human NQO1 Enzyme: Hydride Transfer, Conformational Dynamics and Functional Cooperativity. Antioxidants (Basel) 2020; 9:E772. [PMID: 32825392 PMCID: PMC7554937 DOI: 10.3390/antiox9090772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Human NQO1 [NAD(H):quinone oxidoreductase 1] is a multi-functional and stress-inducible dimeric protein involved in the antioxidant defense, the activation of cancer prodrugs and the stabilization of oncosuppressors. Despite its roles in human diseases, such as cancer and neurological disorders, a detailed characterization of its enzymatic cycle is still lacking. In this work, we provide a comprehensive analysis of the NQO1 catalytic cycle using rapid mixing techniques, including multiwavelength and spectral deconvolution studies, kinetic modeling and temperature-dependent kinetic isotope effects (KIEs). Our results systematically support the existence of two pathways for hydride transfer throughout the NQO1 catalytic cycle, likely reflecting that the two active sites in the dimer catalyze two-electron reduction with different rates, consistent with the cooperative binding of inhibitors such as dicoumarol. This negative cooperativity in NQO1 redox activity represents a sort of half-of-sites activity. Analysis of KIEs and their temperature dependence also show significantly different contributions from quantum tunneling, structural dynamics and reorganizations to catalysis at the two active sites. Our work will improve our understanding of the effects of cancer-associated single amino acid variants and post-translational modifications in this protein of high relevance in cancer progression and treatment.
Collapse
Affiliation(s)
- Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, The University of Brighton, Brighton BN2 4GJ, UK;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
13
|
Yang S, Zhao J, Li L. NAD(P)H: quinone oxidoreductase 1 gene rs1800566 polymorphism increases the risk of cervical cancer in a Chinese Han sample: A STROBE-complaint case-control study. Medicine (Baltimore) 2020; 99:e19941. [PMID: 32443295 PMCID: PMC7253782 DOI: 10.1097/md.0000000000019941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022] Open
Abstract
Recently, 2 studies from Thai and American investigated the relationship between NAD(P)H: quinone oxidoreductase 1(NQO1) gene rs1800566 polymorphism and cervical cancer risk and generated contrary results. However, no Chinese reports have addressed this relationship until now. To explore the association between NQO1 gene rs1800566 polymorphism with cervical cancer, we performed a study in a Chinese Han sample.Using a unmatched case-control design, we enrolled 450 cervical cancer patients and 568 controls in the Central Hospital of Wuhan from January 2010 to December 2016. The genotypes were determined by sequencing polymerase chain reaction product. Hardy-Weinberg equilibrium was assessed using the Chi-square test. The univariate and multi-variate logistic regression with odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the association between the NQO1 gene rs1800566 polymorphism and cervical cancer susceptibility.The Chi-square test indicated that significant allele and genotype distributions differences were observed between case group and control group (P < .001). The logistic regression indicated that TT genotype was associated with higher risk of cervical cancer compare with those with the CT or CC genotype (TT vs CC: OR = 2.82, 95%CI: 1.91-4.17, P < .001; TT vs CT: OR = 2.02, 95%CI: 1.36-3.01, P < .001). The effects of NQO1 show dominant model (TT/CT vs CC: OR = 1.67, 95%CI: 1.30-2.15, P < .001) and recessive model (TT vs. CT/CC: OR = 2.43, 95%CI: 1.68-3.52, P < .001). The significant relationship between NQO1 rs1800566 polymorphism and cervical cancer risk was also found in stratified analyses. The cross-over analysis indicated that there are potential interactions between genetic factors and human papillomavirus infection/ contraceptive oral use for the risk of cervical cancer.NQO1 gene rs1800566 polymorphism is associated with elevated risk of cervical cancer in Chinese Han women. The interactions between rs1800566 polymorphism and human papillomavirus infection/ contraceptive oral use further reinforce this association.
Collapse
Affiliation(s)
| | - Jiannan Zhao
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Li
- Department of Gynaecology and Obstetrics
| |
Collapse
|
14
|
Vankova P, Salido E, Timson DJ, Man P, Pey AL. A Dynamic Core in Human NQO1 Controls the Functional and Stability Effects of Ligand Binding and Their Communication across the Enzyme Dimer. Biomolecules 2019; 9:biom9110728. [PMID: 31726777 PMCID: PMC6921033 DOI: 10.3390/biom9110728] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023] Open
Abstract
Human NAD(P)H:quinone oxidoreductase 1 (NQO1) is a multi-functional protein whose alteration is associated with cancer, Parkinson's and Alzheimer´s diseases. NQO1 displays a remarkable functional chemistry, capable of binding different functional ligands that modulate its activity, stability and interaction with proteins and nucleic acids. Our understanding of this functional chemistry is limited by the difficulty of obtaining structural and dynamic information on many of these states. Herein, we have used hydrogen/deuterium exchange monitored by mass spectrometry (HDXMS) to investigate the structural dynamics of NQO1 in three ligation states: without ligands (NQO1apo), with FAD (NQO1holo) and with FAD and the inhibitor dicoumarol (NQO1dic). We show that NQO1apo has a minimally stable folded core holding the protein dimer, with FAD and dicoumarol binding sites populating binding non-competent conformations. Binding of FAD significantly decreases protein dynamics and stabilizes the FAD and dicoumarol binding sites as well as the monomer:monomer interface. Dicoumarol binding further stabilizes all three functional sites, a result not previously anticipated by available crystallographic models. Our work provides an experimental perspective into the communication of stability effects through the NQO1 dimer, which is valuable for understanding at the molecular level the effects of disease-associated variants, post-translational modifications and ligand binding cooperativity in NQO1.
Collapse
Affiliation(s)
- Pavla Vankova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic;
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de La Laguna, 38320 Tenerife, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK;
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic;
- Correspondence: (P.M.); (A.L.P.)
| | - Angel L. Pey
- Department of Physical Chemistry and Unit of Excellence in Chemistry, University of Granada, Av. Fuentenueva s/n, E-18071 Granada, Spain
- Correspondence: (P.M.); (A.L.P.)
| |
Collapse
|
15
|
Cancer-associated variants of human NQO1: impacts on inhibitor binding and cooperativity. Biosci Rep 2019; 39:BSR20191874. [PMID: 31431515 PMCID: PMC6732362 DOI: 10.1042/bsr20191874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Human NAD(P)H quinone oxidoreductase (DT-diaphorase, NQO1) exhibits negative cooperativity towards its potent inhibitor, dicoumarol. Here, we addressed the hypothesis that the effects of the two cancer-associated polymorphisms (p.R139W and p.P187S) may be partly mediated by their effects on inhibitor binding and negative cooperativity. Dicoumarol stabilized both variants and bound with much higher affinity for p.R139W than p.P187S. Both variants exhibited negative cooperativity towards dicoumarol; in both cases, the Hill coefficient (h) was approximately 0.5 and similar to that observed with the wild-type protein. NQO1 was also inhibited by resveratrol and by nicotinamide. Inhibition of NQO1 by resveratrol was approximately 10,000-fold less strong than that observed with the structurally similar enzyme, NRH quinine oxidoreductase 2 (NQO2). The enzyme exhibited non-cooperative behaviour towards nicotinamide, whereas resveratrol induced modest negative cooperativity (h = 0.85). Nicotinamide stabilized wild-type NQO1 and p.R139W towards thermal denaturation but had no detectable effect on p.P187S. Resveratrol destabilized the wild-type enzyme and both cancer-associated variants. Our data suggest that neither polymorphism exerts its effect by changing the enzyme’s ability to exhibit negative cooperativity towards inhibitors. However, it does demonstrate that resveratrol can inhibit NQO1 in addition to this compound’s well-documented effects on NQO2. The implications of these findings for molecular pathology are discussed.
Collapse
|
16
|
Megarity CF, Timson DJ. Escherichia coli
Modulator of Drug Activity B (MdaB) Has Different Enzymological Properties to Eukaryote Quinone Oxidoreductases. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Clare F. Megarity
- School of Biological SciencesQueen's University Belfast, Medical Biology Centre 97 Lisburn Road UK-Belfast BT9 7BL United Kingdom
| | - David J. Timson
- School of Biological SciencesQueen's University Belfast, Medical Biology Centre 97 Lisburn Road UK-Belfast BT9 7BL United Kingdom
- School of Pharmacy and Biomolecular SciencesThe University of Brighton Huxley Building, Lewes Road UK-Brighton BN2 4GJ United Kingdom
| |
Collapse
|