1
|
Ma S, Chen H, Liu S, Huang X, Mo T, Liu WQ, Zhang W, Ding W, Zhang Q. A gene-encoded aldehyde tag repurposed from RiPP cyclophane-forming pathway. Bioorg Med Chem Lett 2024; 101:129653. [PMID: 38360420 DOI: 10.1016/j.bmcl.2024.129653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Gene-encoded aldehyde tag technology has been widely utilized in protein bioorthogonal chemistry and biotechnological application. Herein, we report utilization of the promiscuous rSAM cyclophane synthase SjiB involved in triceptide biosynthesis as a dedicated and highly efficient formylglycine synthase. The new aldehyde tag sequence in this system, YQSSI, is biosynthetically orthogonal to the known aldehyde tag (C/S)x(P/A)xR. The potential use of SjiB/YQSSI aldehyde tag system was further validated in fluorescent labelling of model proteins.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Heng Chen
- Department of Chemistry, Fudan University, Shanghai 200433, China; State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuxun Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xuedong Huang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
3
|
Yates NDJ, Warnes ME, Breetveld R, Spicer CD, Signoret N, Fascione M. Preparation and Application of an Inexpensive α-Formylglycine Building Block Compatible with Fmoc Solid-Phase Peptide Synthesis. Org Lett 2023; 25:2001-2005. [PMID: 36662590 PMCID: PMC10071478 DOI: 10.1021/acs.orglett.2c04059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
α-Formylglycine (fGly) is a rare residue located in the active site of sulfatases and serves as a precursor to pharmaceutically relevant motifs. The installation of fGly motifs into peptides is currently challenging due to degradation under the acidic and nucleophile-rich conditions accompanying resin cleavage during solid-phase peptide synthesis. We report the synthesis of acid- and nucleophile-tolerant α-formylglycine building blocks from vitamin C and use them to prepare callyaerin A, a macrocyclic peptide containing an fGly-derived motif.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Fascione
- Department of Chemistry, University of York, York YO10 5DD, U.K
| |
Collapse
|
4
|
Jäger C, Croft AK. If It Is Hard, It Is Worth Doing: Engineering Radical Enzymes from Anaerobes. Biochemistry 2022; 62:241-252. [PMID: 36121716 PMCID: PMC9850924 DOI: 10.1021/acs.biochem.2c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With a pressing need for sustainable chemistries, radical enzymes from anaerobes offer a shortcut for many chemical transformations and deliver highly sought-after functionalizations such as late-stage C-H functionalization, C-C bond formation, and carbon-skeleton rearrangements, among others. The challenges in handling these oxygen-sensitive enzymes are reflected in their limited industrial exploitation, despite what they may deliver. With an influx of structures and mechanistic understanding, the scope for designed radical enzymes to deliver wanted processes becomes ever closer. Combined with new advances in computational methods and workflows for these complex systems, the outlook for an increased use of radical enzymes in future processes is exciting.
Collapse
|
5
|
Karsten L, Goett-Zink L, Schmitz J, Hoffrogge R, Grünberger A, Kottke T, Müller KM. Genetically Encoded Ratiometric pH Sensors for the Measurement of Intra- and Extracellular pH and Internalization Rates. BIOSENSORS 2022; 12:bios12050271. [PMID: 35624572 PMCID: PMC9138566 DOI: 10.3390/bios12050271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
pH-sensitive fluorescent proteins as genetically encoded pH sensors are promising tools for monitoring intra- and extracellular pH. However, there is a lack of ratiometric pH sensors, which offer a good dynamic range and can be purified and applied extracellularly to investigate uptake. In our study, the bright fluorescent protein CoGFP_V0 was C-terminally fused to the ligand epidermal growth factor (EGF) and retained its dual-excitation and dual-emission properties as a purified protein. The tandem fluorescent variants EGF-CoGFP-mTagBFP2 (pK′ = 6.6) and EGF-CoGFP-mCRISPRed (pK′ = 6.1) revealed high dynamic ranges between pH 4.0 and 7.5. Using live-cell fluorescence microscopy, both pH sensor molecules permitted the conversion of fluorescence intensity ratios to detailed intracellular pH maps, which revealed pH gradients within endocytic vesicles. Additionally, extracellular binding of the pH sensors to cells expressing the EGF receptor (EGFR) enabled the tracking of pH shifts inside cultivation chambers of a microfluidic device. Furthermore, the dual-emission properties of EGF-CoGFP-mCRISPRed upon 488 nm excitation make this pH sensor a valuable tool for ratiometric flow cytometry. This high-throughput method allowed for the determination of internalization rates, which represents a promising kinetic parameter for the in vitro characterization of protein–drug conjugates in cancer therapy.
Collapse
Affiliation(s)
- Lennard Karsten
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Lukas Goett-Zink
- Biophysical Chemistry and Diagnostics, Medical School OWL, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany; (L.G.-Z.); (T.K.)
| | - Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Raimund Hoffrogge
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Tilman Kottke
- Biophysical Chemistry and Diagnostics, Medical School OWL, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany; (L.G.-Z.); (T.K.)
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
- Correspondence:
| |
Collapse
|
6
|
Bivalent EGFR-Targeting DARPin-MMAE Conjugates. Int J Mol Sci 2022; 23:ijms23052468. [PMID: 35269611 PMCID: PMC8909960 DOI: 10.3390/ijms23052468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a validated tumor marker overexpressed in various cancers such as squamous cell carcinoma (SSC) of the head and neck and gliomas. We constructed protein-drug conjugates based on the anti-EGFR Designed Ankyrin Repeat Protein (DARPin) E01, and compared the bivalent DARPin dimer (DD1) and a DARPin-Fc (DFc) to the monomeric DARPin (DM) and the antibody derived scFv425-Fc (scFvFc) in cell culture and a mouse model. The modular conjugation system, which was successfully applied for the preparation of protein-drug and -dye conjugates, uses bio-orthogonal protein-aldehyde generation by the formylglycine-generating enzyme (FGE). The generated carbonyl moiety is addressed by a bifunctional linker with a pyrazolone for a tandem Knoevenagel reaction and an azide for strain-promoted azide-alkyne cycloaddition (SPAAC). The latter reaction with a PEGylated linker containing a dibenzocyclooctyne (DBCO) for SPAAC and monomethyl auristatin E (MMAE) as the toxin provided the stable conjugates DD1-MMAE (drug-antibody ratio, DAR = 2.0) and DFc-MMAE (DAR = 4.0) with sub-nanomolar cytotoxicity against the human squamous carcinoma derived A431 cells. In vivo imaging of Alexa Fluor 647-dye conjugates in A431-xenografted mice bearing subcutaneous tumors as the SCC model revealed unspecific binding of bivalent DARPins to the ubiquitously expressed EGFR. Tumor-targeting was verified 6 h post-injection solely for DD1 and scFvFc. The total of four administrations of 6.5 mg/kg DD1-MMAE or DFc-MMAE twice weekly did not cause any sequela in mice. MMAE conjugates showed no significant anti-tumor efficacy in vivo, but a trend towards increased necrotic areas (p = 0.2213) was observed for the DD1-MMAE (n = 5).
Collapse
|
7
|
Boschanski M, Krüger T, Karsten L, Falck G, Alam S, Gerlach M, Müller B, Müller KM, Sewald N, Dierks T. Site-Specific Conjugation Strategy for Dual Antibody-Drug Conjugates Using Aerobic Formylglycine-Generating Enzymes. Bioconjug Chem 2021; 32:1167-1174. [PMID: 34060308 DOI: 10.1021/acs.bioconjchem.1c00246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiple, site-specific protein conjugation is increasingly attractive for the generation of antibody-drug conjugates (ADCs). As it is important to control the number and position of cargoes in an ADC, position-selective generation of reactive sites in the protein of interest is required. Formylglycine (FGly) residues are generated by enzymatic conversion of cysteine residues embedded in a certain amino acid sequence motif with a formylglycine-generating enzyme (FGE). The addition of copper ions increases FGE activity leading to the conversion of cysteines within less readily accepted sequences. With this tuned enzyme activity, it is possible to address two different recognition sequences using two aerobic formylglycine-generating enzymes. We demonstrate an improved and facile strategy for the functionalization of a DARPin (designed ankyrin repeat protein) and the single-chain antibody scFv425-Fc, both directed against the epidermal growth factor receptor (EGFR). The single-chain antibody was conjugated with monomethyl auristatin E (MMAE) and carboxyfluorescein (CF) and successfully tested for receptor binding, internalization, and cytotoxicity in cell culture, respectively.
Collapse
Affiliation(s)
- Mareile Boschanski
- Biochemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Tobias Krüger
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Lennard Karsten
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Georg Falck
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Sarfaraz Alam
- Biochemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Marcus Gerlach
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | | | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Thomas Dierks
- Biochemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
8
|
|