Röthlisberger P, Levi-Acobas F, Leumann CJ, Hollenstein M. Enzymatic synthesis of biphenyl-DNA oligonucleotides.
Bioorg Med Chem 2020;
28:115487. [PMID:
32284226 DOI:
10.1016/j.bmc.2020.115487]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022]
Abstract
The incorporation of nucleotides equipped with C-glycosidic aromatic nucleobases into DNA and RNA is an alluring strategy for a number of practical applications including fluorescent labelling of oligonucleotides, expansion of the genetic alphabet for the generation of aptamers and semi-synthetic organisms, or the modulation of excess electron transfer within DNA. However, the generation of C-nucleoside containing oligonucleotides relies mainly on solid-phase synthesis which is quite labor intensive and restricted to short sequences. Here, we explore the possibility of constructing biphenyl-modified DNA sequences using enzymatic synthesis. The presence of multiple biphenyl-units or biphenyl residues modified with electron donors and acceptors permits the incorporation of a single dBphMP nucleotide. Moreover, templates with multiple abasic sites enable the incorporation of up to two dBphMP nucleotides, while TdT-mediated tailing reactions produce single-stranded DNA oligonucleotides with four biphenyl residues appended at the 3'-end.
Collapse