1
|
Palmioli A, Airoldi C. An NMR Toolkit to Probe Amyloid Oligomer Inhibition in Neurodegenerative Diseases: From Ligand Screening to Dissecting Binding Topology and Mechanisms of Action. Chempluschem 2024; 89:e202400243. [PMID: 38712695 DOI: 10.1002/cplu.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The aggregation of amyloid peptides and proteins into toxic oligomers is a hallmark of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Machado-Joseph's disease, and transmissible spongiform encephalopathies. Inhibition of amyloid oligomers formation and interactions with biological counterparts, as well as the triggering of non-toxic amorphous aggregates, are strategies towards preventive interventions against these pathologies. NMR spectroscopy addresses the need for structural characterization of amyloid proteins and their aggregates, their binding to inhibitors, and rapid screening of compound libraries for ligand identification. Here we briefly discuss the solution experiments constituting the NMR spectroscopist's toolkit and provide examples of their application.
Collapse
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
2
|
Nair CR, Sreejalekshmi K. Building synergistic nanoplatforms via dendrimer-small organic molecule handshakes: Heterocycle ligation as a promising strategy. MATERIALS TODAY CHEMISTRY 2024; 38:102099. [DOI: 10.1016/j.mtchem.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Palmioli A, Moretti L, Vezzoni CA, Legnani L, Sperandeo P, Baldini L, Sansone F, Airoldi C, Casnati A. Multivalent calix[4]arene-based mannosylated dendrons as new FimH ligands and inhibitors. Bioorg Chem 2023; 138:106613. [PMID: 37224739 DOI: 10.1016/j.bioorg.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
We report the synthesis and biological characterization of a novel class of multivalent glycoconjugates as hit compounds for the design of new antiadhesive therapies against urogenital tract infections (UTIs) caused by uropathogenic E. coli strains (UPEC). The first step of UTIs is the molecular recognition of high mannose N-glycan expressed on the surface of urothelial cells by the bacterial lectin FimH, allowing the pathogen adhesion required for mammalian cell invasion. The inhibition of FimH-mediated interactions is thus a validated strategy for the treatment of UTIs. To this purpose, we designed and synthesized d-mannose multivalent dendrons supported on a calixarene core introducing a significant structural change from a previously described family of dendrimers bearing the same dendrons units on a flexible pentaerythritol scaffold core. The new molecular architecture increased the inhibitory potency against FimH-mediated adhesion processes by about 16 times, as assessed by yeast agglutination assay. Moreover, the direct molecular interaction of the new compounds with FimH protein was assessed by on-cell NMR experiments acquired in the presence of UPEC cells.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Luca Moretti
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Carlo Alberto Vezzoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Laura Legnani
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Laura Baldini
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Cristina Airoldi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy.
| |
Collapse
|
4
|
LuTheryn G, Ho EML, Choi V, Carugo D. Cationic Microbubbles for Non-Selective Binding of Cavitation Nuclei to Bacterial Biofilms. Pharmaceutics 2023; 15:pharmaceutics15051495. [PMID: 37242736 DOI: 10.3390/pharmaceutics15051495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The presence of multi-drug resistant biofilms in chronic, persistent infections is a major barrier to successful clinical outcomes of therapy. The production of an extracellular matrix is a characteristic of the biofilm phenotype, intrinsically linked to antimicrobial tolerance. The heterogeneity of the extracellular matrix makes it highly dynamic, with substantial differences in composition between biofilms, even in the same species. This variability poses a major challenge in targeting drug delivery systems to biofilms, as there are few elements both suitably conserved and widely expressed across multiple species. However, the presence of extracellular DNA within the extracellular matrix is ubiquitous across species, which alongside bacterial cell components, gives the biofilm its net negative charge. This research aims to develop a means of targeting biofilms to enhance drug delivery by developing a cationic gas-filled microbubble that non-selectively targets the negatively charged biofilm. Cationic and uncharged microbubbles loaded with different gases were formulated and tested to determine their stability, ability to bind to negatively charged artificial substrates, binding strength, and, subsequently, their ability to adhere to biofilms. It was shown that compared to their uncharged counterparts, cationic microbubbles facilitated a significant increase in the number of microbubbles that could both bind and sustain their interaction with biofilms. This work is the first to demonstrate the utility of charged microbubbles for the non-selective targeting of bacterial biofilms, which could be used to significantly enhance stimuli-mediated drug delivery to the bacterial biofilm.
Collapse
Affiliation(s)
- Gareth LuTheryn
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), The Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7HE, UK
- Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Elaine M L Ho
- Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
- Artificial Intelligence and Informatics, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QX, UK
| | - Victor Choi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), The Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7HE, UK
| |
Collapse
|
5
|
A Fucosylated Lactose-Presenting Tetravalent Glycocluster Acting as a Mutual Ligand of Pseudomonas aeruginosa Lectins A (PA-IL) and B (PA-IIL)-Synthesis and Interaction Studies. Int J Mol Sci 2022; 23:ijms232416194. [PMID: 36555839 PMCID: PMC9782601 DOI: 10.3390/ijms232416194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is an important opportunistic human pathogen associated with cystic fibrosis. P. aeruginosa produces two soluble lectins, the d-galactose-specific lectin PA-IL (LecA) and the l-fucose-specific lectin PA-IIL (LecB), among other virulence factors. These lectins play an important role in the adhesion to host cells and biofilm formation. Moreover, PA-IL is cytotoxic to respiratory cells in the primary culture. Therefore, these lectins are promising therapeutic targets. Specifically, carbohydrate-based compounds could inhibit their activity. In the present work, a 3-O-fucosyl lactose-containing tetravalent glycocluster was synthesized and utilized as a mutual ligand of galactophilic and fucophilic lectins. Pentaerythritol equipped with azido ethylene glycol-linkers was chosen as a multivalent scaffold and the glycocluster was constructed by coupling the scaffold with propargyl 3-O-fucosyl lactoside using an azide-alkyne 1,3-dipolar cycloaddition reaction. The interactions between the glycocluster and PA-IL or PA-IIL were investigated by isothermal titration microcalorimetry and saturation transfer difference NMR spectroscopy. These results may assist in the development of efficient anti-adhesion therapy for the treatment of a P. aeruginosa infection.
Collapse
|
6
|
Fonseca VJA, Braga AL, Filho JR, Teixeira CS, da Hora GCA, Morais-Braga MFB. A review on the antimicrobial properties of lectins. Int J Biol Macromol 2022; 195:163-178. [PMID: 34896466 DOI: 10.1016/j.ijbiomac.2021.11.209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
Lectins are biologically versatile biomolecules with remarkable antimicrobial effects, notably against bacteria, fungi and protozoa, in addition to modulating host immunity. For this, the lectins bind to carbohydrates on the surface of the pathogen, which can cause damage to the cell wall and prevent the attachment of microorganisms to host cells. Thus, this study intends to review the biological activities of lectins, with an emphasis on antimicrobial activity. Lectins of plant stood out for its antimicrobial effects, demonstrating that they act against a variety of strains, where in vitro were able to inhibit their development and affect their morphology. In vivo, they modulated host immunity, signaling and activating defense cells. Some of these lectins were capable to modulate the action of antibiotics, indicating their potential to minimize the antibiotic resistance. The results suggest that lectins have antimicrobial activity with potential to be used in drug development.
Collapse
Affiliation(s)
- Victor Juno Alencar Fonseca
- Laboratório de Micologia Aplicada do Cariri - LMAC, Universidade Regional do Cariri - URCA, Crato, CE, Brazil
| | - Ana Lays Braga
- Laboratório de Micologia Aplicada do Cariri - LMAC, Universidade Regional do Cariri - URCA, Crato, CE, Brazil
| | - Jaime Ribeiro Filho
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (Fiocruz), Salvador, Brazil
| | - Claudener Souza Teixeira
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, CE, Brazil
| | - Gabriel C A da Hora
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | | |
Collapse
|
7
|
Boffoli D, Bellato F, Avancini G, Gurnani P, Yilmaz G, Romero M, Robertson S, Moret F, Sandrelli F, Caliceti P, Salmaso S, Cámara M, Mantovani G, Mastrotto F. Tobramycin-loaded complexes to prevent and disrupt Pseudomonas aeruginosa biofilms. Drug Deliv Transl Res 2021; 12:1788-1810. [PMID: 34841492 DOI: 10.1007/s13346-021-01085-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
Carbohydrate-based materials are increasingly investigated for a range of applications spanning from healthcare to advanced functional materials. Synthetic glycopolymers are particularly attractive as they possess low toxicity and immunogenicity and can be used as multivalent ligands to target sugar-binding proteins (lectins). Here, we utilised RAFT polymerisation to synthesize two families of novel diblock copolymers consisting of a glycopolymers block containing either mannopyranose or galactopyranose pendant units, which was elongated with sodium 2-acrylamido-2-methyl-1-propanesulfonate (AMPS) to generate a polyanionic block. The latter enabled complexation of cationic aminoglycoside antibiotic tobramycin through electrostatic interactions (loading efficiency in the 0.5-6.3 wt% range, depending on the copolymer). The resulting drug vectors were characterized by dynamic light scattering, zeta-potential, and transmission electron microscopy. Tobramycin-loaded complexes were tested for their ability to prevent clustering or disrupt biofilm of the Pseudomonas aeruginosa Gram-negative bacterium responsible for a large proportion of nosocomial infection, especially in immunocompromised patients. P. aeruginosa possesses two specific tetrameric carbohydrate-binding adhesins, LecA (PA-IL, galactose/N-acetyl-D-galactosamine-binding) and LecB (PA-IIL, fucose/mannose-binding), and the cell-associated and extracellular adhesin CdrA (Psl/mannose-binding) thus ideally suited for targeted drug delivery using sugar-decorated tobramycin-loaded complexes here developed. Both aliphatic and aromatic linkers were utilised to link the sugar pendant units to the polyacrylamide polymer backbone to assess the effect of the nature of such linkers on bactericidal/bacteriostatic properties of the complexes. Results showed that tobramycin-loaded complexes efficiently suppressed (40 to 60% of inhibition) in vitro biofilm formation in PAO1-L P. aeruginosa and that preferential targeting of PAO1-L biofilm can be achieved using mannosylated glycopolymer-b-AMPSm.
Collapse
Affiliation(s)
- Delia Boffoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Greta Avancini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy.,Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Gokhan Yilmaz
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Shaun Robertson
- School of Life Sciences, Nottingham University Biodiscovery Institute, National Biofilms Innovation Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy.,School of Life Sciences, Nottingham University Biodiscovery Institute, National Biofilms Innovation Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Federica Sandrelli
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Miguel Cámara
- School of Life Sciences, Nottingham University Biodiscovery Institute, National Biofilms Innovation Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Giuseppe Mantovani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy.
| |
Collapse
|
8
|
Mohy El Dine T, Jimmidi R, Diaconu A, Fransolet M, Michiels C, De Winter J, Gillon E, Imberty A, Coenye T, Vincent SP. Pillar[5]arene-Based Polycationic Glyco[2]rotaxanes Designed as Pseudomonas aeruginosa Antibiofilm Agents. J Med Chem 2021; 64:14728-14744. [PMID: 34542288 DOI: 10.1021/acs.jmedchem.1c01241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa (P.A.) is a human pathogen belonging to the top priorities for the discovery of new therapeutic solutions. Its propensity to generate biofilms strongly complicates the treatments required to cure P.A. infections. Herein, we describe the synthesis of a series of novel rotaxanes composed of a central galactosylated pillar[5]arene, a tetrafucosylated dendron, and a tetraguanidinium subunit. Besides the high affinity of the final glycorotaxanes for the two P.A. lectins LecA and LecB, potent inhibition levels of biofilm growth were evidenced, showing that their three subunits work synergistically. An antibiofilm assay using a double ΔlecAΔlecB mutant compared to the wild type demonstrated that the antibiofilm activity of the best glycorotaxane is lectin-mediated. Such antibiofilm potency had rarely been reached in the literature. Importantly, none of the final rotaxanes was bactericidal, showing that their antibiofilm activity does not depend on bacteria killing, which is a rare feature for antibiofilm agents.
Collapse
Affiliation(s)
- Tharwat Mohy El Dine
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Ravikumar Jimmidi
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Andrei Diaconu
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium.,Center of Advanced Research in Bionanoconjugates and Biopolymers "Petru Poni", Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Maude Fransolet
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Carine Michiels
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Julien De Winter
- Department of Chemistry, Laboratory of Organic Synthesis and Mass Spectrometry, University of Mons (Umons), 20 place du parc, 7000 Mons, Belgium
| | - Emilie Gillon
- Centre de recherches sur les macromolécules végétales (CERMAV), University of Genoble Alpes, CNRS, 601 rue de la chimie, 38000 Grenoble, France
| | - Anne Imberty
- Centre de recherches sur les macromolécules végétales (CERMAV), University of Genoble Alpes, CNRS, 601 rue de la chimie, 38000 Grenoble, France
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, University of Ghent (UGent), Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
9
|
Sivignon A, Yu SY, Ballet N, Vandekerckove P, Barnich N, Guerardel Y. Heteropolysaccharides from S. cerevisiae show anti-adhesive properties against E. coli associated with Crohn's disease. Carbohydr Polym 2021; 271:118415. [PMID: 34364556 DOI: 10.1016/j.carbpol.2021.118415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
The Saccharomyces cerevisiae CNCM I-3856 was previously reported to strongly inhibit adherent-invasive Escherichia coli (AIEC) adhesion to intestinal epithelial cells in vitro and to favor AIEC elimination from the gut in a murine model of Crohn's disease in vivo. In order to identify which cell wall components of yeast are responsible for AIEC elimination, constituent polysaccharides of yeast were isolated and their anti-adhesive ability against AIEC adhesion in vitro was screened. A fraction containing mannan, β-glucan and α-glucan extracted from yeast cell-walls was shown to inhibit 95% of AIEC adhesion in vitro and was thus identified as the strongest anti-adhesive yeast cell wall component. Furthermore, this mannan-glucan-containing fraction was shown to accelerate AIEC decolonization from gut in vivo. This fraction could be proposed as a treatment to eliminate AIEC bacteria in patients with Crohn's disease, a microbial trigger of intestinal inflammation.
Collapse
Affiliation(s)
- Adeline Sivignon
- Université Clermont Auvergne/Inserm U1071; USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Shin-Yi Yu
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nathalie Ballet
- Lesaffre International, Lesaffre Group, 59700 Marcq-en-Barœul, France
| | | | - Nicolas Barnich
- Université Clermont Auvergne/Inserm U1071; USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Yann Guerardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
10
|
Malacrida A, Semperboni S, Di Domizio A, Palmioli A, Broggi L, Airoldi C, Meregalli C, Cavaletti G, Nicolini G. Tubulin binding potentially clears up Bortezomib and Carfilzomib differential neurotoxic effect. Sci Rep 2021; 11:10523. [PMID: 34006972 PMCID: PMC8131610 DOI: 10.1038/s41598-021-89856-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Proteasome inhibitors (PIs) represent the gold standard in the treatment of multiple myeloma. Among PIs, Bortezomib (BTZ) is frequently used as first line therapy, but peripheral neuropathy (PN), occurring approximately in 50% of patients, impairs their life, representing a dose-limiting toxicity. Carfilzomib (CFZ), a second-generation PI, induces a significantly less severe PN. We investigated possible BTZ and CFZ off-targets able to explain their different neurotoxicity profiles. In order to identify the possible PIs off-targets we used the SPILLO-PBSS software that performs a structure-based in silico screening on a proteome-wide scale. Among the top-ranked off-targets of BTZ identified by SPILLO-PBSS we focused on tubulin which, by contrast, did not turn out to be an off-target of CFZ. We tested the hypothesis that the direct interaction between BTZ and microtubules would inhibit the tubulin alfa GTPase activity, thus reducing the microtubule catastrophe and consequently furthering the microtubules polymerization. This hypothesis was validated in a cell-free model, since BTZ (but not CFZ) reduces the concentration of the free phosphate released during GTP hydrolysis. Moreover, NMR binding studies clearly demonstrated that BTZ, unlike CFZ, is able to interact with both tubulin dimers and polymerized form. Our data suggest that different BTZ and CFZ neurotoxicity profiles are independent from their proteasome inhibition, as demonstrated in adult mice dorsal root ganglia primary sensory neurons, and, first, we demonstrate, in a cell free model, that BTZ is able to directly bind and perturb microtubules.
Collapse
Affiliation(s)
- A Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy. .,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.
| | - S Semperboni
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy.,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| | - A Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milan, Italy.,SPILLOproject, Via Stradivari 17, Paderno Dugnano, 20037, Milano, Italy
| | - A Palmioli
- Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.,Department of Biotechnology and Biosciences, BioOrgNMR Lab, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - L Broggi
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy
| | - C Airoldi
- Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.,Department of Biotechnology and Biosciences, BioOrgNMR Lab, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - C Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy. .,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.
| | - G Cavaletti
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy.,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| | - G Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy.,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| |
Collapse
|
11
|
Palmioli A, Sperandeo P, Bertuzzi S, Polissi A, Airoldi C. On-cell saturation transfer difference NMR for the identification of FimH ligands and inhibitors. Bioorg Chem 2021; 112:104876. [PMID: 33845337 DOI: 10.1016/j.bioorg.2021.104876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
We describe the development of an on-cell NMR method for the rapid screening of FimH ligands and the structural identification of ligand binding epitopes. FimH is a mannose-binding bacterial adhesin expressed at the apical end of type 1 pili of uropathogenic bacterial strains and responsible for their d-mannose sensitive adhesion to host mammalian epithelial cells. Because of these properties, FimH is a key virulence factor and an attractive therapeutic target for urinary tract infection. We prepared synthetic d-mannose decorated dendrimers, we tested their ability to prevent the FimH-mediated yeast agglutination, and thus we used the compounds showing the best inhibitory activity as models of FimH multivalent ligands to set up our NMR methodology. Our experimental protocol, based on on-cell STD NMR techniques, is a suitable tool for the screening and the epitope mapping of FimH ligands aimed at the development of new antiadhesive and diagnostic tools against urinary tract infection pathogens. Notably, the study is carried out in a physiological environment, i.e. at the surface of living pathogen cells expressing FimH.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Sara Bertuzzi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Spain
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Cristina Airoldi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| |
Collapse
|
12
|
Damalanka VC, Maddirala AR, Janetka JW. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opin Drug Discov 2021; 16:513-536. [PMID: 33337918 DOI: 10.1080/17460441.2021.1857721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The direct binding of carbohydrates or those presented on glycoproteins or glycolipids to proteins is the primary effector of many biological responses. One class of carbohydrate-binding proteins, lectins are important in all forms of life. Their functions in animals include regulating cell adhesion, glycoprotein synthesis, metabolism, and mediating immune system response while in bacteria and viruses a lectin-mediated carbohydrate-protein interaction between host cells and the pathogen initiates pathogenesis of the infection.Areas covered: In this review, the authors outline the structural and functional pathogenesis of lectins from bacteria, amoeba, and humans. Mimics of a carbohydrate are referred to as glycomimetics, which are much smaller in molecular weight and are devised to mimic the key binding interactions of the carbohydrate while also allowing additional contacts with the lectin. This article emphasizes the various approaches used over the past 10-15 years in the rational design of glycomimetic ligands.Expert opinion: Medicinal chemistry efforts enabled by X-ray structural biology have identified small-molecule glycomimetic lectin antagonists that have entered or are nearing clinical trials. A common theme in these strategies is the use of biaryl ring systems to emulate the carbohydrate interactions with the lectin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| |
Collapse
|
13
|
Madaoui M, Vidal O, Meyer A, Noël M, Lacroix JM, Vasseur JJ, Marra A, Morvan F. Modified Galacto- or Fuco-Clusters Exploiting the Siderophore Pathway to Inhibit the LecA- or LecB-Associated Virulence of Pseudomonas aeruginosa. Chembiochem 2020; 21:3433-3448. [PMID: 32701213 DOI: 10.1002/cbic.202000490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/11/2022]
Abstract
Galacto- and fuco-clusters conjugated with one to three catechol or hydroxamate motifs were synthesised to target LecA and LecB lectins of Pseudomonas aeruginosa (PA) localised in the outer membrane and inside the bacterium. The resulting glycocluster-pseudosiderophore conjugates were evaluated as Trojan horses to cross the outer membrane of PA by iron transport. The data suggest that glycoclusters with catechol moieties are able to hijack the iron transport, whereas those with hydroxamates showed strong nonspecific interactions. Mono- and tricatechol galactoclusters (G1C and G3C) were evaluated as inhibitors of infection by PA in comparison with the free galactocluster (G0). All of them exhibited an inhibitory effect between 46 to 75 % at 100 μM, with a higher potency than G0. This result shows that LecA localised in the outer membrane of PA is involved in the infection mechanism.
Collapse
Affiliation(s)
- Mimouna Madaoui
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Olivier Vidal
- Unité de Glycobiologie Structurelle et Fonctionnelle (UGSF), UMR 8576 CNRS, Université de Lille Cité Scientifique, Avenue Mendeleiev, Bat. C9, 59655, Villeneuve d'Ascq Cedex, France
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Mathieu Noël
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurelle et Fonctionnelle (UGSF), UMR 8576 CNRS, Université de Lille Cité Scientifique, Avenue Mendeleiev, Bat. C9, 59655, Villeneuve d'Ascq Cedex, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - François Morvan
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
14
|
Akimoto M, Yu T, Moleschi K, Van K, Anand GS, Melacini G. An NMR based phosphodiesterase assay. Chem Commun (Camb) 2020; 56:8091-8094. [PMID: 32555789 DOI: 10.1039/d0cc01673j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We propose a phosphodiesterase assay based on 1D 1H NMR to monitor the hydrolysis of cyclic nucleotides directly, without requiring tags or the addition of exogenous reagents. The method is suitable to measure phosphodiesterase KM and kcat parameters and to identify phosphodiesterase inhibitors.
Collapse
Affiliation(s)
- Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
On-cell saturation transfer difference NMR study of Bombesin binding to GRP receptor. Bioorg Chem 2020; 99:103861. [PMID: 32339813 DOI: 10.1016/j.bioorg.2020.103861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/15/2023]
Abstract
We report the NMR characterization of the molecular interaction between Gastrin Releasing Peptide Receptor (GRP-R) and its natural ligand bombesin (BN). GRP-R is a transmembrane G-protein coupled receptor promoting the stimulation of cancer cell proliferation; in addition, being overexpressed on the surface of different human cancer cell lines, it is ideal for the development of new strategies for the selective targeted delivery of anticancer drugs and diagnostic devices to tumor cells. However, the design of new GRP-R binders requires structural information on receptor interaction with its natural ligands. The experimental protocol presented herein, based on on-cell STD NMR techniques, is a powerful tool for the screening and the epitope mapping of GRP-R ligands aimed at the development of new anticancer and diagnostic tools. Notably, the study can be carried out in a physiological environment, at the surface of tumoral cells overespressing GRP-R. Moreover, to the best of our knowledge, this is the first example of an NMR experiment able to detect and investigate the structural determinants of BN/GRP-R interaction.
Collapse
|
16
|
Malinovská L, Thai Le S, Herczeg M, Vašková M, Houser J, Fujdiarová E, Komárek J, Hodek P, Borbás A, Wimmerová M, Csávás M. Synthesis of β-d-galactopyranoside-Presenting Glycoclusters, Investigation of Their Interactions with Pseudomonas aeruginosa Lectin A (PA-IL) and Evaluation of Their Anti-Adhesion Potential. Biomolecules 2019; 9:E686. [PMID: 31683947 PMCID: PMC6920806 DOI: 10.3390/biom9110686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen associated with cystic fibrosis. This bacterium produces, among other virulence factors, a soluble d-galactose-specific lectin PA-IL (LecA). PA-IL plays an important role in the adhesion to the host cells and is also cytotoxic. Therefore, this protein is an interesting therapeutic target, suitable for inhibition by carbohydrate-based compounds. In the current study, β-d-galactopyranoside-containing tri- and tetravalent glycoclusters were synthesized. Methyl gallate and pentaerythritol equipped with propargyl groups were chosen as multivalent scaffolds and the galactoclusters were built from the above-mentioned cores by coupling ethylene or tetraethylene glycol-bridges and peracetylated propargyl β-d-galactosides using 1,3-dipolar azide-alkyne cycloaddition. The interaction between galactoside derivatives and PA-IL was investigated by several biophysical methods, including hemagglutination inhibition assay, isothermal titration calorimetry, analytical ultracentrifugation, and surface plasmon resonance. Their ability to inhibit the adhesion of P. aeruginosa to bronchial cells was determined by ex vivo assay. The newly synthesized multivalent galactoclusters proved to be significantly better ligands than simple d-galactose for lectin PA-IL and as a result, two representatives of the dendrimers were able to decrease adhesion of P. aeruginosa to bronchial cells to approximately 32% and 42%, respectively. The results may provide an opportunity to develop anti-adhesion therapy for the treatment of P. aeruginosa infection.
Collapse
Affiliation(s)
- Lenka Malinovská
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Son Thai Le
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
- Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Michaela Vašková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Eva Fujdiarová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Jan Komárek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Michaela Wimmerová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Magdolna Csávás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| |
Collapse
|