1
|
Hong S, Yu T, Wang Z, Lee CH. Biomaterials for reliable wearable health monitoring: Applications in skin and eye integration. Biomaterials 2025; 314:122862. [PMID: 39357154 DOI: 10.1016/j.biomaterials.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in biomaterials have significantly impacted wearable health monitoring, creating opportunities for personalized and non-invasive health assessments. These developments address the growing demand for customized healthcare solutions. Durability is a critical factor for biomaterials in wearable applications, as they must withstand diverse wearing conditions effectively. Therefore, there is a heightened focus on developing biomaterials that maintain robust and stable functionalities, essential for advancing wearable sensing technologies. This review examines the biomaterials used in wearable sensors, specifically those interfaced with human skin and eyes, highlighting essential strategies for achieving long-lasting and stable performance. We specifically discuss three main categories of biomaterials-hydrogels, fibers, and hybrid materials-each offering distinct properties ideal for use in durable wearable health monitoring systems. Moreover, we delve into the latest advancements in biomaterial-based sensors, which hold the potential to facilitate early disease detection, preventative interventions, and tailored healthcare approaches. We also address ongoing challenges and suggest future directions for research on material-based wearable sensors to encourage continuous innovation in this dynamic field.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ziheng Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA; School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Shamsabadi A, Haghighi T, Carvalho S, Frenette LC, Stevens MM. The Nanozyme Revolution: Enhancing the Performance of Medical Biosensing Platforms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300184. [PMID: 37102628 DOI: 10.1002/adma.202300184] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Nanozymes represent a class of nanosized materials that exhibit innate catalytic properties similar to biological enzymes. The unique features of these materials have positioned them as promising candidates for applications in clinical sensing devices, specifically those employed at the point-of-care. They notably have found use as a means to amplify signals in nanosensor-based platforms and thereby improve sensor detection limits. Recent developments in the understanding of the fundamental chemistries underpinning these materials have enabled the development of highly effective nanozymes capable of sensing clinically relevant biomarkers at detection limits that compete with "gold-standard" techniques. However, there remain considerable hurdles that need to be overcome before these nanozyme-based sensors can be utilized in a platform ready for clinical use. An overview of the current understandings of nanozymes for disease diagnostics and biosensing applications and the unmet challenges that must be considered prior to their translation in clinical diagnostic tests is provided.
Collapse
Affiliation(s)
- André Shamsabadi
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Tabasom Haghighi
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Sara Carvalho
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Leah C Frenette
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Luo C, Li X, Li Y. Application of the Peroxidase‒like Activity of Nanomaterials for the Detection of Pathogenic Bacteria and Viruses. Int J Nanomedicine 2024; 19:441-452. [PMID: 38250191 PMCID: PMC10799623 DOI: 10.2147/ijn.s442335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Infectious diseases caused by pathogenic bacteria and viruses pose a significant threat to human life and well-being. The prompt identification of these pathogens, characterized by speed, accuracy, and efficiency, not only aids in the timely screening of infected individuals and the prevention of further transmission, but also facilitates the precise diagnosis and treatment of patients. Direct smear microscopy, microbial culture, nucleic acid-based polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) based on microbial surface antigens or human serum antibodies, have made substantial contributions to the prevention and management of infectious diseases. Due to its shorter processing time, simple equipment requirements, and no need for professional and technical personnel, ELISA has inherent advantages over other methods for detecting pathogenic bacteria and viruses. Horseradish peroxidase mediated catalysis of substrate coloration is the key for the detection of target substances in ELISA. However, the variability, high cost, and environmental susceptibility of natural peroxidase greatly limit the application of ELISA in pathogen detection. Compared with natural enzymes, nanomaterials with enzyme-mimicking activity are inexpensive, highly environmentally stable, easy to store and mass producing, etc. Based on their peroxidase-like activities and unique physicochemical properties, nanomaterials can greatly improve the efficiency and ease of use of ELISA-like detection methods for pathogenic bacteria and viruses. This review introduces recent advances in the application of nanomaterials with peroxidase-like activity for the detection of pathogenic bacteria (both gram-negative bacteria and gram-positive bacteria) and viruses (both RNA viruses and DNA viruses). The emphasis is on the detection principle and the evaluation of effectiveness. The limitations and prospects for future translations are also discussed.
Collapse
Affiliation(s)
- Cheng Luo
- School of Medicine, Yichun University, Yichun, 336000, People’s Republic of China
| | - Xianglong Li
- Medical and Radiation Oncology, Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yan Li
- School of Medicine, Yichun University, Yichun, 336000, People’s Republic of China
| |
Collapse
|
4
|
Ma T, Huang K, Cheng N. Recent Advances in Nanozyme-Mediated Strategies for Pathogen Detection and Control. Int J Mol Sci 2023; 24:13342. [PMID: 37686145 PMCID: PMC10487713 DOI: 10.3390/ijms241713342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Pathogen detection and control have long presented formidable challenges in the domains of medicine and public health. This review paper underscores the potential of nanozymes as emerging bio-mimetic enzymes that hold promise in effectively tackling these challenges. The key features and advantages of nanozymes are introduced, encompassing their comparable catalytic activity to natural enzymes, enhanced stability and reliability, cost effectiveness, and straightforward preparation methods. Subsequently, the paper delves into the detailed utilization of nanozymes for pathogen detection. This includes their application as biosensors, facilitating rapid and sensitive identification of diverse pathogens, including bacteria, viruses, and plasmodium. Furthermore, the paper explores strategies employing nanozymes for pathogen control, such as the regulation of reactive oxygen species (ROS), HOBr/Cl regulation, and clearance of extracellular DNA to impede pathogen growth and transmission. The review underscores the vast potential of nanozymes in pathogen detection and control through numerous specific examples and case studies. The authors highlight the efficiency, rapidity, and specificity of pathogen detection achieved with nanozymes, employing various strategies. They also demonstrate the feasibility of nanozymes in hindering pathogen growth and transmission. These innovative approaches employing nanozymes are projected to provide novel options for early disease diagnoses, treatment, and prevention. Through a comprehensive discourse on the characteristics and advantages of nanozymes, as well as diverse application approaches, this paper serves as a crucial reference and guide for further research and development in nanozyme technology. The expectation is that such advancements will significantly contribute to enhancing disease control measures and improving public health outcomes.
Collapse
Affiliation(s)
- Tianyi Ma
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
5
|
Liu Q, Wei H, Du Y. Microfluidic bioanalysis based on nanozymes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Jin N, Xue L, Guo R, Wang S, Liu Y, Liao M, Li Y, Lin J. Staggered magnetic bead chains enhanced bacterial colorimetric biosensing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Bai T, Wang L, Wang M, Zhu Y, Li W, Guo Z, Zhang Y. Strategic synthesis of trimetallic Au@Ag–Pt nanorattles for ultrasensitive colorimetric detection in lateral flow immunoassay. Biosens Bioelectron 2022; 208:114218. [DOI: 10.1016/j.bios.2022.114218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
|
8
|
Chakraborty N, Gandhi S, Verma R, Roy I. Emerging Prospects of Nanozymes for Antibacterial and Anticancer Applications. Biomedicines 2022; 10:biomedicines10061378. [PMID: 35740402 PMCID: PMC9219663 DOI: 10.3390/biomedicines10061378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
The ability of some nanoparticles to mimic the activity of certain enzymes paves the way for several attractive biomedical applications which bolster the already impressive arsenal of nanomaterials to combat deadly diseases. A key feature of such 'nanozymes' is the duplication of activities of enzymes or classes of enzymes, such as catalase, superoxide dismutase, oxidase, and peroxidase which are known to modulate the oxidative balance of treated cells for facilitating a particular biological process such as cellular apoptosis. Several nanoparticles that include those of metals, metal oxides/sulfides, metal-organic frameworks, carbon-based materials, etc., have shown the ability to behave as one or more of such enzymes. As compared to natural enzymes, these artificial nanozymes are safer, less expensive, and more stable. Moreover, their catalytic activity can be tuned by changing their size, shape, surface properties, etc. In addition, they can also be engineered to demonstrate additional features, such as photoactivated hyperthermia, or be loaded with active agents for multimodal action. Several researchers have explored the nanozyme-mediated oxidative modulation for therapeutic purposes, often in combination with other diagnostic and/or therapeutic modalities, using a single probe. It has been observed that such synergistic action can effectively by-pass the various defense mechanisms adapted by rogue cells such as hypoxia, evasion of immuno-recognition, drug-rejection, etc. The emerging prospects of using several such nanoparticle platforms for the treatment of bacterial infections/diseases and cancer, along with various related challenges and opportunities, are discussed in this review.
Collapse
Affiliation(s)
- Nayanika Chakraborty
- Department of Chemistry, University of Delhi, Delhi 110007, India; (N.C.); (S.G.)
| | - Sona Gandhi
- Department of Chemistry, University of Delhi, Delhi 110007, India; (N.C.); (S.G.)
- Department of Chemistry, Galgotias University, Greater Noida 203201, India
| | - Rajni Verma
- School of Physics, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (R.V.); (I.R.)
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India; (N.C.); (S.G.)
- Correspondence: (R.V.); (I.R.)
| |
Collapse
|
9
|
Songca SP. Applications of Nanozymology in the Detection and Identification of Viral, Bacterial and Fungal Pathogens. Int J Mol Sci 2022; 23:4638. [PMID: 35563029 PMCID: PMC9100627 DOI: 10.3390/ijms23094638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Nanozymes are synthetic nanoparticulate materials that mimic the biological activities of enzymes by virtue of their surface chemistry. Enzymes catalyze biological reactions with a very high degree of specificity. Examples include the horseradish peroxidase, lactate, glucose, and cholesterol oxidases. For this reason, many industrial uses of enzymes outside their natural environments have been developed. Similar to enzymes, many industrial applications of nanozymes have been developed and used. Unlike the enzymes, however, nanozymes are cost-effectively prepared, purified, stored, and reproducibly and repeatedly used for long periods of time. The detection and identification of pathogens is among some of the reported applications of nanozymes. Three of the methodologic milestones in the evolution of pathogen detection and identification include the incubation and growth, immunoassays and the polymerase chain reaction (PCR) strategies. Although advances in the history of pathogen detection and identification have given rise to novel methods and devices, these are still short of the response speed, accuracy and cost required for point-of-care use. Debuting recently, nanozymology offers significant improvements in the six methodological indicators that are proposed as being key in this review, including simplicity, sensitivity, speed of response, cost, reliability, and durability of the immunoassays and PCR strategies. This review will focus on the applications of nanozymes in the detection and identification of pathogens in samples obtained from foods, natural, and clinical sources. It will highlight the impact of nanozymes in the enzyme-linked immunosorbent and PCR strategies by discussing the mechanistic improvements and the role of the design and architecture of the nanozyme nanoconjugates. Because of their contribution to world health burden, the three most important pathogens that will be considered include viruses, bacteria and fungi. Although not quite seen as pathogens, the review will also consider the detection of cancer cells and helminth parasites. The review leaves very little doubt that nanozymology has introduced remarkable advances in enzyme-linked immunosorbent assays and PCR strategies for detecting these five classes of pathogens. However, a gap still exists in the application of nanozymes to detect and identify fungal pathogens directly, although indirect strategies in which nanozymes are used have been reported. From a mechanistic point of view, the nanozyme technology transfer to laboratory research methods in PCR and enzyme-linked immunosorbent assay studies, and the point-of-care devices such as electronic biosensors and lateral flow detection strips, that is currently taking place, is most likely to give rise to no small revolution in each of the six methodological indicators for pathogen detection and identification. While the evidence of widespread research reports, clinical trials and point-of-care device patents support this view, the gaps that still exist point to a need for more basic research studies to be conducted on the applications of nanozymology in pathogen detection and identification. The multidisciplinary nature of the research on the application of nanozymes in the detection and identification of pathogens requires chemists and physicists for the design, fabrication, and characterization of nanozymes; microbiologists for the design, testing and analysis of the methodologies, and clinicians or clinical researchers for the evaluation of the methodologies and devices in the clinic. Many reports have also implicated required skills in mathematical modelling, and electronic engineering. While the review will conclude with a synopsis of the impact of nanozymology on the detection and identification of viruses, bacteria, fungi, cancer cells, and helminths, it will also point out opportunities that exist in basic research as well as opportunities for innovation aimed at novel laboratory methodologies and devices. In this regard there is no doubt that there are numerous unexplored research areas in the application of nanozymes for the detection of pathogens. For example, most research on the applications of nanozymes for the detection and identification of fungi is so far limited only to the detection of mycotoxins and other chemical compounds associated with fungal infection. Therefore, there is scope for exploration of the application of nanozymes in the direct detection of fungi in foods, especially in the agricultural production thereof. Many fungal species found in seeds severely compromise their use by inactivating the germination thereof. Fungi also produce mycotoxins that can severely compromise the health of humans if consumed.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
10
|
Kumawat M, Umapathi A, Lichtfouse E, Daima HK. Nanozymes to fight the COVID-19 and future pandemics. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3951-3957. [PMID: 34031634 PMCID: PMC8134966 DOI: 10.1007/s10311-021-01252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Mamta Kumawat
- Amity Centre for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002 Rajasthan India
| | - Akhela Umapathi
- Amity Centre for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002 Rajasthan India
| | - Eric Lichtfouse
- CNRS, IRD, INRAE, Coll France, Aix-Marseille Université, 13100 Marseille, Aix‑en‑Provence France
| | - Hemant Kumar Daima
- Amity Centre for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002 Rajasthan India
| |
Collapse
|
11
|
Proximity ligation assay: an ultrasensitive method for protein quantification and its applications in pathogen detection. Appl Microbiol Biotechnol 2021; 105:923-935. [PMID: 33427935 DOI: 10.1007/s00253-020-11049-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
It is of great significance to establish sensitive and accurate pathogen detection methods, considering the continuous emergence or re-emergence of infectious diseases seriously influences the safety of human and animals. Proximity ligation assay (PLA) is developed for the sensitive protein detection and also can be used for the detection of pathogens. PLA employs aptamer or monoclonal/polyclonal antibody-nucleic acid complexes as proximity probes. When the paired proximity probes bind to the same target protein or protein complex, they will be adjacent to each other and form an amplifiable DNA sequence through ligation. Combining the specificity of enzyme-linked immunosorbent assay (ELISA) and sensitivity of polymerase chain reaction (PCR), PLA transforms the detection of protein into the detection of DNA nucleic acid sequence. Therefore, as an ultrasensitive protein assay, PLA has great potential for quantification, localization of protein, and clinical diagnostics. In this review, we summarize the basic principles of PLA and its applications in pathogen detection. KEY POINTS: • Different forms of proximity ligation assay are introduced. • Applications of proximity ligation assay in pathogen detection are summarized. • Proximity ligation assay is an ultrasensitive method to quantify protein and pathogen.
Collapse
|