1
|
Andrałojć W, Wieruszewska J, Pasternak K, Gdaniec Z. Solution Structure of a Lanthanide-binding DNA Aptamer Determined Using High Quality pseudocontact shift restraints. Chemistry 2022; 28:e202202114. [PMID: 36043489 PMCID: PMC9828363 DOI: 10.1002/chem.202202114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 01/12/2023]
Abstract
In this contribution we report the high-resolution NMR structure of a recently identified lanthanide-binding aptamer (LnA). We demonstrate that the rigid lanthanide binding by LnA allows for the measurement of anisotropic paramagnetic NMR restraints which to date remain largely inaccessible for nucleic acids. One type of such restraints - pseudocontact shifts (PCS) induced by four different paramagnetic lanthanides - was extensively used throughout the current structure determination study and the measured PCS turned out to be exceptionally well reproduced by the final aptamer structure. This finding opens the perspective for a broader application of paramagnetic effects in NMR studies of nucleic acids through the transplantation of the binding site found in LnA into other DNA/RNA systems.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic ChemistryPolish Academy of SciencesNoskowskiego 12/1461-704 PoznanPoland
| | - Julia Wieruszewska
- Institute of Bioorganic ChemistryPolish Academy of SciencesNoskowskiego 12/1461-704 PoznanPoland
| | - Karol Pasternak
- Institute of Bioorganic ChemistryPolish Academy of SciencesNoskowskiego 12/1461-704 PoznanPoland
| | - Zofia Gdaniec
- Institute of Bioorganic ChemistryPolish Academy of SciencesNoskowskiego 12/1461-704 PoznanPoland
| |
Collapse
|
2
|
Yassin A, Nehmeh B, Kantar SE, Al Kazzaz Y, Akoury E. Synthesis of lanthanide tag and experimental studies on paramagnetically induced residual dipolar couplings. BMC Chem 2022; 16:54. [PMID: 35864525 PMCID: PMC9306141 DOI: 10.1186/s13065-022-00847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique for the structure elucidation of molecules and determination of their characteristic interactions. Residual Dipolar Coupling (RDC) is an NMR parameter that provides global orientation information of molecules but necessitates the use of an anisotropic orientation medium for the partial alignment of the target molecule with respect to the magnetic field. Importantly, anisotropic paramagnetic tags have been successful as orienting media in biomolecular NMR applications but their use in small organic molecules remains imperfect due to challenges in designing functional lanthanide complexes with varying degrees of bonding in the Ln(III) inner coordination sphere. In this study, we propose a strategy for the synthesis of the lanthanide tag 4-mercaptomethylpyridine-2,6-dicarboxylic acid, 4-MMDPA and the measurement of RDCs in a target molecule using several paramagnetic lanthanide complexes.
Collapse
Affiliation(s)
- Ali Yassin
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon.,Inorganic and Organometallic Coordination Chemistry Laboratory, Faculty of Science, LCIO, Lebanese University, Beirut, Lebanon
| | - Bilal Nehmeh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
| | - Sally El Kantar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon.,TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Université de Technologie de Compiègne, ESCOM, CS 60 319, 60203, Compiègne Cedex, France
| | - Yara Al Kazzaz
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
| | - Elias Akoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon. .,Department of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig Maximilian University, 81377, Munich, Germany.
| |
Collapse
|
3
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
4
|
Ma B, Chen JL, Cui CY, Yang F, Gong YJ, Su XC. Rigid, Highly Reactive and Stable DOTA-like Tags Containing a Thiol-Specific Phenylsulfonyl Pyridine Moiety for Protein Modification and NMR Analysis*. Chemistry 2021; 27:16145-16152. [PMID: 34595784 DOI: 10.1002/chem.202102495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Site specific installation of a paramagnetic ion with magnetic anisotropy in a biomolecule generates valuable structural restraints, such as pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs). These paramagnetic effects can be used to characterize the structures, interactions and dynamics of biological macromolecules and their complexes. Two single-armed DOTA-like tags, BrPSPy-DO3M(S)A-Ln and BrPSPy-6M-DO3M(S)A-Ln, each containing a thiol-specific reacting group, that is, a phenylsulfonyl pyridine moiety, are demonstrated as rigid, reactive and stable paramagnetic tags for protein modification by formation of a reducing resistant thioether bond between the protein and the tag. The two tags present high reactivity with the solvent exposed thiol group in aqueous solution at room temperature. The introduction of Br at the meta-position in pyridine enhances the reactivity of 4-phenylsulfonyl pyridine towards the solvent exposed thiol group in a protein, whereas the ortho-methyl group in pyridine increases the rigidity of the tag in the protein conjugates. The high performance of these two tags has been demonstrated in different cysteine mutants of ubiquitin and GB1. The high reactivity and rigidity of these two tags can be added in the toolbox of paramagnetic tags suitable for the high-resolution NMR measurements of biological macromolecules and their complexes.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Chao-Yu Cui
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| |
Collapse
|
5
|
Chen JL, Chen BG, Li B, Yang F, Su XC. Assessing multiple conformations of lanthanide binding tags for proteins using a sensitive 19F-reporter. Chem Commun (Camb) 2021; 57:4291-4294. [PMID: 33913982 DOI: 10.1039/d1cc00791b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quantifying the isomeric species of metal complexes in solution is difficult. 19F NMR herein was used to determine the abundance of isomeric species and dynamic properties of lanthanide binding tags. The results suggest that 19F is an efficient reporter in assessing and screening paramagnetic tags suitable for protein NMR analysis.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ben-Guang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Täubert S, Zhang YH, Martinez MM, Siepel F, Wöltjen E, Leonov A, Griesinger C. Lanthanide Tagging of Oligonucleotides to Nucleobase for Paramagnetic NMR. Chembiochem 2020; 21:3333-3337. [PMID: 32687667 PMCID: PMC7754328 DOI: 10.1002/cbic.202000417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Indexed: 12/03/2022]
Abstract
Although lanthanide tags, which have large anisotropic magnetic susceptibilities, have already been introduced to enrich NMR parameters by long‐range pseudoconact shifts (PCSs) and residual dipolar couplings (RDCs) of proteins, their application to nucleotides has so far been limited to one previous report, due to the high affinities of lanthanides for the phosphodiester backbone of nucleotides and difficult organic synthesis. Herein, we report successful attachment of a lanthanide tag to a chemically synthesized oligonucleotide via a disulfide bond. NMR experiments reveal PCSs of up to 1 ppm and H−H RDCs of up to 8 Hz at 950 MHz. Although weaker magnetic alignment was achieved than with proteins, the paramagnetic data could be fitted to the known structure of the DNA, taking the mobility of the tag into account. While further rigidification of the tag is desirable, this tag could also be used to measure heteronuclear RDCs of 13C,15N‐labeled chemically synthesized DNA and RNA.
Collapse
Affiliation(s)
- Sebastian Täubert
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Yong-Hui Zhang
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Mitcheell Maestre Martinez
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Florian Siepel
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Edith Wöltjen
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Andrei Leonov
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|