1
|
Yu H, Zhang X, Acevedo-Rocha CG, Li A, Reetz MT. Protein engineering using mutability landscapes: Controlling site-selectivity of P450-catalyzed steroid hydroxylation. Methods Enzymol 2023; 693:191-229. [PMID: 37977731 DOI: 10.1016/bs.mie.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Directed evolution and rational design have been used widely in engineering enzymes for their application in synthetic organic chemistry and biotechnology. With stereoselectivity playing a crucial role in catalysis for the synthesis of valuable chemical and pharmaceutical compounds, rational design has not achieved such wide success in this specific area compared to directed evolution. Nevertheless, one bottleneck of directed evolution is the laborious screening efforts and the observed trade-offs in catalytic profiles. This has motivated researchers to develop more efficient protein engineering methods. As a prime approach, mutability landscaping avoids such trade-offs by providing more information of sequence-function relationships. Here, we describe an application of this efficient protein engineering method to improve the regio-/stereoselectivity and activity of P450BM3 for steroid hydroxylation, while keeping the mutagenesis libraries small so that they will require only minimal screening.
Collapse
Affiliation(s)
- Huili Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Carlos G Acevedo-Rocha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China.
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Muelheim, Germany; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, P. R. China.
| |
Collapse
|
2
|
Gu J, Xu Y, Nie Y. Role of distal sites in enzyme engineering. Biotechnol Adv 2023; 63:108094. [PMID: 36621725 DOI: 10.1016/j.biotechadv.2023.108094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
The limitations associated with natural enzyme catalysis have triggered the rise of the field of protein engineering. Traditional rational design was based on the analysis of protein structural information and catalytic mechanisms to identify key active sites or ligand binding sites to reshape the substrate pocket. The role and significance of functional sites in the active center have been studied extensively. With a deeper understanding of the structure-catalysis relationship map, the entire protein molecule can be filled with residues that play a substantial role in its structure and function. However, the catalytic mechanism underlying distal mutations remains unclear. The aim of this review was to highlight the criticality of the distal site in enzyme engineering based on the following three aspects: What can distal mutations exert on function from mutability landscape? How do distal sites influence enzyme function? How to predict and design distal mutations? This review provides insights into the catalytic mechanism of enzymes from the global interaction network, knowledge from sequence-structure-dynamics-function relationships, and strategies for distal mutation-based protein engineering.
Collapse
Affiliation(s)
- Jie Gu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| |
Collapse
|
3
|
Iannuzzelli J, Bacik JP, Moore EJ, Shen Z, Irving EM, Vargas DA, Khare SD, Ando N, Fasan R. Tuning Enzyme Thermostability via Computationally Guided Covalent Stapling and Structural Basis of Enhanced Stabilization. Biochemistry 2022; 61:1041-1054. [PMID: 35612958 PMCID: PMC9178789 DOI: 10.1021/acs.biochem.2c00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Enhancing the thermostability of enzymes without impacting their catalytic function represents an important yet challenging goal in protein engineering and biocatalysis. We recently introduced a novel method for enzyme thermostabilization that relies on the computationally guided installation of genetically encoded thioether "staples" into a protein via cysteine alkylation with the noncanonical amino acid O-2-bromoethyl tyrosine (O2beY). Here, we demonstrate the functionality of an expanded set of electrophilic amino acids featuring chloroacetamido, acrylamido, and vinylsulfonamido side-chain groups for protein stapling using this strategy. Using a myoglobin-based cyclopropanase as a model enzyme, our studies show that covalent stapling with p-chloroacetamido-phenylalanine (pCaaF) provides higher stapling efficiency and enhanced stability (thermodynamic and kinetic) compared to the other stapled variants and the parent protein. Interestingly, molecular simulations of conformational flexibility of the cross-links show that the pCaaF staple allows fewer energetically feasible conformers than the other staples, and this property may be a broader indicator of stability enhancement. Using this strategy, pCaaF-stapled variants with significantly enhanced stability against thermal denaturation (ΔTm' = +27 °C) and temperature-induced heme loss (ΔT50 = +30 °C) were obtained while maintaining high levels of catalytic activity and stereoselectivity. Crystallographic analyses of singly and doubly stapled variants provide key insights into the structural basis for stabilization, which includes both direct interactions of the staples with protein residues and indirect interactions through adjacent residues involved in heme binding. This work expands the toolbox of protein stapling strategies available for protein stabilization.
Collapse
Affiliation(s)
- Jacob
A. Iannuzzelli
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - John-Paul Bacik
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Eric J. Moore
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Zhuofan Shen
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Ellen M. Irving
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - David A. Vargas
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sagar D. Khare
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Nozomi Ando
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
4
|
Kunzendorf A, Saifuddin M, Poelarends GJ. Enantiocomplementary Michael Additions of Acetaldehyde to Aliphatic Nitroalkenes Catalyzed by Proline-Based Carboligases. Chembiochem 2022; 23:e202100644. [PMID: 35049100 PMCID: PMC9306545 DOI: 10.1002/cbic.202100644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/19/2022] [Indexed: 11/17/2022]
Abstract
The blockbuster drug Pregabalin is widely prescribed for the treatment of painful diabetic neuropathy. Given the continuous epidemic growth of diabetes, the development of sustainable synthesis routes for Pregabalin and structurally related pharmaceutically active γ‐aminobutyric acid (GABA) derivatives is of high interest. Enantioenriched γ‐nitroaldehydes are versatile synthons for the production of GABA derivatives, which can be prepared through a Michael‐type addition of acetaldehyde to α,β‐unsaturated nitroalkenes. Here we report that tailored variants of the promiscuous enzyme 4‐oxalocrotonate tautomerase (4‐OT) can accept diverse aliphatic α,β‐unsaturated nitroalkenes as substrates for acetaldehyde addition. Highly enantioenriched aliphatic (R)‐ and (S)‐γ‐nitroaldehydes were obtained in good yields using two enantiocomplementary 4‐OT variants. Our results underscore the synthetic potential of 4‐OT for the preparation of structurally diverse synthons for bioactive analogues of Pregabalin.
Collapse
Affiliation(s)
- Andreas Kunzendorf
- University of Groningen: Rijksuniversiteit Groningen, Chemical and Pharmaceutical Biology, NETHERLANDS
| | - Mohammad Saifuddin
- University of Groningen: Rijksuniversiteit Groningen, Chemical and Pharmaceutical Biology, NETHERLANDS
| | - Gerrit J Poelarends
- University of Groningen, Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, NETHERLANDS
| |
Collapse
|
5
|
Cadet XF, Gelly JC, van Noord A, Cadet F, Acevedo-Rocha CG. Learning Strategies in Protein Directed Evolution. Methods Mol Biol 2022; 2461:225-275. [PMID: 35727454 DOI: 10.1007/978-1-0716-2152-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic biology is a fast-evolving research field that combines biology and engineering principles to develop new biological systems for medical, pharmacological, and industrial applications. Synthetic biologists use iterative "design, build, test, and learn" cycles to efficiently engineer genetic systems that are reliable, reproducible, and predictable. Protein engineering by directed evolution can benefit from such a systematic engineering approach for various reasons. Learning can be carried out before starting, throughout or after finalizing a directed evolution project. Computational tools, bioinformatics, and scanning mutagenesis methods can be excellent starting points, while molecular dynamics simulations and other strategies can guide engineering efforts. Similarly, studying protein intermediates along evolutionary pathways offers fascinating insights into the molecular mechanisms shaped by evolution. The learning step of the cycle is not only crucial for proteins or enzymes that are not suitable for high-throughput screening or selection systems, but it is also valuable for any platform that can generate a large amount of data that can be aided by machine learning algorithms. The main challenge in protein engineering is to predict the effect of a single mutation on one functional parameter-to say nothing of several mutations on multiple parameters. This is largely due to nonadditive mutational interactions, known as epistatic effects-beneficial mutations present in a genetic background may not be beneficial in another genetic background. In this work, we provide an overview of experimental and computational strategies that can guide the user to learn protein function at different stages in a directed evolution project. We also discuss how epistatic effects can influence the success of directed evolution projects. Since machine learning is gaining momentum in protein engineering and the field is becoming more interdisciplinary thanks to collaboration between mathematicians, computational scientists, engineers, molecular biologists, and chemists, we provide a general workflow that familiarizes nonexperts with the basic concepts, dataset requirements, learning approaches, model capabilities and performance metrics of this intriguing area. Finally, we also provide some practical recommendations on how machine learning can harness epistatic effects for engineering proteins in an "outside-the-box" way.
Collapse
Affiliation(s)
- Xavier F Cadet
- PEACCEL, Artificial Intelligence Department, Paris, France
| | - Jean Christophe Gelly
- Laboratoire d'Excellence GR-Ex, Paris, France
- BIGR, DSIMB, UMR_S1134, INSERM, University of Paris & University of Reunion, Paris, France
| | | | - Frédéric Cadet
- Laboratoire d'Excellence GR-Ex, Paris, France
- BIGR, DSIMB, UMR_S1134, INSERM, University of Paris & University of Reunion, Paris, France
| | | |
Collapse
|