1
|
Yang Z, Farrell A, Pradhan S, Zhang KH, Guo W, Wu Y, Shao X, Roy A, Garcia ES, Lu Y. On-Site Portable Lithium Detection in Mining and Recycling Industries Based on a DNAzyme Fluorescent Sensor. Angew Chem Int Ed Engl 2024:e202413118. [PMID: 39581875 DOI: 10.1002/anie.202413118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The global demand for lithium has soared in recent years due to the wide use of lithium batteries. To meet this demand, we herein report developing novel on-site sample preparation methods for the extraction of Li+ from relevant materials, including brine water, spodumene rock, as well as lithium-ion battery electrodes, and a DNAzyme-based fluorescent sensor for sensitive and robust detection of Li+ in these samples down to 1.4 mM (10 ppm) using a portable fluorometer. The system can distinguish key threshold lithium levels that indicate economic value across several industries, including 200 ppm Li+ for brine mining, 6 % Li2O or SC6 for rock mining, and Li+-specific aging in LIBs. The methods developed and demonstrated in this work will allow highly selective, on-site, portable detection of lithium in both environmental samples to identify new lithium resources and in battery electrodes to guide recycling strategies in order to meet the global demand for lithium.
Collapse
Affiliation(s)
- Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Farrell
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Shreestika Pradhan
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karen Huilin Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weijie Guo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiangli Shao
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aritra Roy
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Elijah S Garcia
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Shi L, Wang L, Yu X, Kuang D, Huang Y, Yang N, Yang J, Li G. Colorimetric detection of furin based on enhanced catalytic activity of G-quadruplex/hemin DNAzyme. Anal Chim Acta 2024; 1323:343070. [PMID: 39182972 DOI: 10.1016/j.aca.2024.343070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Rapid and sensitive colorimetric detection methods are crucial for diseases diagnosis, particularly those involving proteases like furin, which are implicated in various conditions, including cancer. Traditional detection methods for furin suffer from limitations in sensitivity and practicality for on-site detection, motivating the development of novel detection strategies. Therefore, developing a simple, enzyme-free, and rapid colorimetric analysis method with high sensitivity for furin detection is imperative. RESULTS Herein, we have proposed a colorimetric method in this work for the first time to detect furin, leveraging the assembly of G-quadruplex/hemin DNAzyme with enhanced catalytic activity. Specifically, a peptide-DNA conjugate (PDC) comprising a furin-recognition peptide and flanking DNA sequences for signal amplification is designed to facilitate the DNAzyme assembly. Upon furin treatment, PDC cleavage triggers a cyclic catalytic hairpin assembly reaction to form the complementary double-stranded structures by hairpin 1 (HP1) and hairpin 2 (HP2), bringing the G-quadruplex sequence in HP1 closer to hemin on HP2. Moreover, the resulting G-quadruplex/hemin DNAzymes exhibit robust peroxidase-like activity, enabling the catalysis of the colorimetric reaction of ABTS2- for furin detection. Our method demonstrates high sensitivity, rapid response, and compatibility with complex sample matrices, achieving a detection limit as low as 1.1 pM. SIGNIFICANCE The DNAzyme reported in this work exhibits robust catalytic activity, enabling high sensitivity and good efficiency for the detection. By eliminating the requirement for exogenous enzymes, our approach enables visual furin detection without expensive instrumentation and reagents, promising significant utility in biomedical and clinical diagnostic applications. Given the various design of peptide sequence and the programmability of DNA, it can be readily applied to analyzing other useful tumor biomarkers.
Collapse
Affiliation(s)
- Liu Shi
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Lin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Xiaomeng Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Deqi Kuang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Nana Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
3
|
Liu Y, Wang X, Liu J. Unexpected enrichment of DNA aptamers for Zn 2+ ions from an insulin selection. Chem Commun (Camb) 2024; 60:6280-6283. [PMID: 38809225 DOI: 10.1039/d4cc01546k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We serendipitously discovered Zn2+-binding DNA aptamers when selecting insulin aptamers. The Zn-1 aptamer binds to Zn2+ with a dissociation constant (Kd) of ∼1 μM, and has 450-fold higher selectivity for Zn2+ over Cd2+. A strand-displacement based fluorescent sensor achieved a limit of detection of 0.2 μM Zn2+.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Xiaoqin Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
4
|
Ouyang Y, O'Hagan MP, Willner B, Willner I. Aptamer-Modified Homogeneous Catalysts, Heterogenous Nanoparticle Catalysts, and Photocatalysts: Functional "Nucleoapzymes", "Aptananozymes", and "Photoaptazymes". ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210885. [PMID: 37083210 DOI: 10.1002/adma.202210885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Conjugation of aptamers to homogeneous catalysts ("nucleoapzymes"), heterogeneous nanoparticle catalysts ("aptananozymes"), and photocatalysts ("photoaptazymes") yields superior catalytic/photocatalytic hybrid nanostructures emulating functions of native enzymes and photosystems. The concentration of the substrate in proximity to the catalytic sites ("molarity effect") or spatial concentration of electron-acceptor units in spatial proximity to the photosensitizers, by aptamer-ligand complexes, leads to enhanced catalytic/photocatalytic efficacies of the hybrid nanostructures. This is exemplified by sets of "nucleoapzymes" composed of aptamers conjugated to the hemin/G-quadruplex DNAzymes or metal-ligand complexes as catalysts, catalyzing the oxidation of dopamine to aminochrome, oxygen-insertion into the Ar─H moiety of tyrosinamide and the subsequent oxidation of the catechol product into aminochrome, or the hydrolysis of esters or ATP. Also, aptananozymes consisting of aptamers conjugated to Cu2+ - or Ce4+ -ion-modified C-dots or polyadenine-stabilized Au nanoparticles acting as catalysts oxidizing dopamine or operating bioreactor biocatalytic cascades, are demonstrated. In addition, aptamers conjugated to the Ru(II)-tris-bipyridine photosensitizer or the Zn(II) protoporphyrin IX photosensitizer provide supramolecular photoaptazyme assemblies emulating native photosynthetic reaction centers. Effective photoinduced electron transfer followed by the catalyzed synthesis of NADPH or the evolution of H2 is demonstrated by the photosystems. Structure-function relationships dictate the catalytic and photocatalytic efficacies of the systems.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Michael P O'Hagan
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Bilha Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
5
|
Li J, Chen C, Luo F, Lin Z, Wang J, Huang A, Sun Y, Qiu B. Highly sensitive biosensor for specific miRNA detection based on cascade signal amplification and magnetic electrochemiluminescence nanoparticles. Anal Chim Acta 2024; 1288:342123. [PMID: 38220270 DOI: 10.1016/j.aca.2023.342123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Herein, magnetic electrochemiluminescence (ECL) nanoparticle Fe3O4@PtPd/Ru(bpy)32+ had been synthesized then been coupled with CRISPR/Cas13a system and Zn2+ dependent DNAzyme to design a novel ECL biosensor for specific detection of microRNA-145 (miRNA). The synthesized multifunctional magnetic nanoluminescent materials Fe3O4@PtPd/Ru(bpy)32+ not only load Ru(bpy)32+ to provide ECL signals, but also can quickly achieve separation and enrichment from complex matrices. In addition, ferrocene (Fc) was used as a quencher in the Ru(bpy)32+/tripropylamine (TPA) system. Fc was modified on DNA bound to Fe3O4@PtPd. Benefited from the highly specific recognition ability of CRISPR/Cas13a, the target miRNA induces CRISPR/Cas13a trans-cleavage to trigger the Zn2+-dependent DNAzyme cyclic cleavage to realize the dual signal amplification. DNA modified by Fc was split by target miRNA-induced cleaving, and then magnetic separation was performed to keep Fc away from the surface of the nanoparticles. Thus, the enhanced ECL signal was obtained to detect miRNA-145. Under optimized conditions, the prepared sensor showed a wide linear range (1 fM to 1 nM) and a low limit of detection (LOD) down to 0.41 fM. Furthermore, it shows excellent selectivity and good reproducibility. The proposed ECL platform has huge potential applications in the development of various sensitive sensors for detecting the other miRNA.
Collapse
Affiliation(s)
- Jiawen Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Cheng Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Aiwen Huang
- Clinical Pharmacy Department, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350001, PR China.
| | - Ying Sun
- Department of Gastroenterology, Fuzhou First Hospital Affiliated with Fujian Medical University, PR China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China.
| |
Collapse
|
6
|
Li B, Lu Y, Huang X, Ning Y, Shi Q, Liu J, Liu B. Single Multifunctional Nanocabinets-Based Target-Activated Feedback for Simultaneously Precise Monitoring and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305777. [PMID: 37797188 DOI: 10.1002/smll.202305777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Stimulus-responsive mode is highly desirable for improving the precise monitoring and physiological efficacy of endogenous biomarkers (EB). However, its integrated application for visual detection and therapy is limited by inappropriate use of responsive triggers and poor delivery of EB signal-transducing agents, which remain challenging in simultaneous monitoring and noninvasive therapy of EB and EB-mediated pathological events. Target microRNA (miRNA) as controllable reaction triggers and DNAzyme as signal-transducing agent are proposed to develop target-stimulated multifunctional nanocabinets (MFNCs) for the visual tracking of both miRNA and miRNA-mediated anticancer events. The MFNCs, equipped with a target-discriminating sequence-incorporated DNAzyme motif, can specifically release therapeutic molecules through target-triggered conformational switches, accompanied by transduction signal output. Target detection and molecule release performance are recorded in parallel via reverse dual-signal feedback at the single-molecule level. In addition, the intrinsic thermal-replenishing of the MFNCs leads to tumor ablation without invasive exogenous aids. The system achieves visual target quantification, anticancer molecule real-time tracking, and tumor suppression in vivo and in vitro. This work proposes a new paradigm for precise visual exploration of EB or EB-mediated bio-events and provides a demonstration of efficacious all-in-one detection and therapy based on the target-triggered multifunctional nanosystem.
Collapse
Affiliation(s)
- Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yujun Ning
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Qian Shi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Jianwei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Zhong K, Zhang Z, Cheng W, Liu G, Zhang X, Zhang J, Sun S, Wang B. Photodynamic O 2 Economizer Encapsulated with DNAzyme for Enhancing Mitochondrial Gene-Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2302495. [PMID: 38056018 DOI: 10.1002/adhm.202302495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Emerging research suggests that mitochondrial DNA is a potential target for cancer treatment. However, achieving precise delivery of deoxyribozymes (DNAzymes) and combining photodynamic therapy (PDT) and DNAzyme-based gene silencing together for enhancing mitochondrial gene-photodynamic synergistic therapy remains challenging. Accordingly, herein, intelligent supramolecular nanomicelles are constructed by encapsulating a DNAzyme into a photodynamic O2 economizer for mitochondrial NO gas-enhanced synergistic gene-photodynamic therapy. The designed nanomicelles demonstrate sensitive acid- and red-light sequence-activated behaviors. After entering the cancer cells and targeting the mitochondria, these micelles will disintegrate and release the DNAzyme and Mn (II) porphyrin in the tumor microenvironment. Mn (II) porphyrin acts as a DNAzyme cofactor to activate the DNAzyme for the cleavage reaction. Subsequently, the NO-carrying donor is decomposed under red light irradiation to generate NO that inhibits cellular respiration, facilitating the conversion of more O2 into singlet oxygen (1 O2 ) in the tumor cells, thereby significantly enhancing the efficacy of PDT. In vitro and in vivo experiments reveal that the proposed system can efficiently target mitochondria and exhibits considerable antitumor effects with negligible systemic toxicity. Thus, this study provides a useful conditional platform for the precise delivery of DNAzymes and a novel strategy for activatable NO gas-enhanced mitochondrial gene-photodynamic therapy.
Collapse
Affiliation(s)
- Kaipeng Zhong
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, China
| | - Zefan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenyuan Cheng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
8
|
Zhou L, Li X, Wang L, Zhou Z, Hu S, Zhao S, Zhang L. Fluid Multivalent Recognition Accelerating and Boosting Upconversion Luminescence-Activated DNA Nanomachines for Rapid and Sensitive In Vivo Imaging. Anal Chem 2023; 95:18497-18503. [PMID: 38047495 DOI: 10.1021/acs.analchem.3c03840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
By integrating near-infrared (NIR) light-dependent optical control and DNA walkers-based signal amplification, upconversion luminescence-activated DNA nanomachines hold great potential in conducting an in vivo analysis. For the typical DNA nanomachines, the immobile multivalent recognition interface greatly compromised the reaction kinetics and amplification efficiency due to the cleavage-dependent response mode. In this work, novel upconversion luminescence-activated DNA nanomachines with a fluid multivalent recognition interface were reported for rapid and sensitive in vivo imaging. As a proof-of-concept study, the photolocked DNAzyme-based walker system was anchored on the surface of phospholipid membrane-coated upconversion nanoparticles through the cholesterol-phospholipid interaction to acquire a fluid multivalent recognition interface. Upon sequential inputs of NIR light and metal ions, the formed DNA nanomachines were autonomously initiated and generated a cascade of amplified signal. Relative to the typical DNA nanomachines, the proposed ones possess an accelerated reaction rate and an improved amplification capability owing to a higher local concentration by the lateral mobility. The present work provides a versatile alternative for performing precise and highly efficient in vivo analysis.
Collapse
Affiliation(s)
- Liuyan Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiaokun Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Luyin Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhihong Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
9
|
Nel I, Münch C, Shamkeeva S, Heinemann ML, Isermann B, Aktas B. The Challenge to Stabilize, Extract and Analyze Urinary Cell-Free DNA (ucfDNA) during Clinical Routine. Diagnostics (Basel) 2023; 13:3670. [PMID: 38132253 PMCID: PMC10743081 DOI: 10.3390/diagnostics13243670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The "Liquid Biopsy" has become a powerful tool for cancer research during the last decade. Circulating cell-free DNA (cfDNA) that originates from tumors has emerged as one of the most promising analytes. In contrast to plasma-derived cfDNA, only a few studies have investigated urinary cfDNA. One reason might be rapid degradation and hence inadequate concentrations for downstream analysis. In this study, we examined the stability of cfDNA in urine using different methods of preservation under various storage conditions. METHODOLOGY To mimic patient samples, a pool of healthy male and female urine donors was spiked with a synthetic cfDNA reference standard (fragment size 170 bp) containing the T790M mutation in the EGFR gene. Spiked samples were preserved with three different buffers and with no buffer over four different storage periods (0 h; 4 h; 12 h; 24 h) at room temperature vs. 4 °C. The preservatives used were Urinary Analyte Stabilizer (UAS, Novosanis, Wijnegem, Belgium), Urine Conditioning Buffer (UCB, Zymo, Freiburg, Germany) and a self-prepared buffer called "AlloU". CfDNA was extracted using the QIAamp MinElute ccfDNA Mini Kit (Qiagen, Hilden, Germany). CfDNA concentration was measured using the Qubit™ 4 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). Droplet digital PCR (ddPCR) was used for detection and quantification of the T790M mutation. RESULTS Almost no spiked cfDNA was recoverable from samples with no preservation buffer and the T790M variant was not detectable in these samples. These findings indicate that cfDNA was degraded below the detection limit by urinary nucleases. Stabilizing buffers showed varying efficiency in preventing this degradation. The most effective stabilizing buffer under all storage conditions was the UAS, enabling adequate recovery of the T790M variant using ddPCR. CONCLUSION From a technical point of view, stabilizing buffers and adequate storage conditions are a prerequisite for translation of urinary cfDNA diagnostics into clinical routine.
Collapse
Affiliation(s)
- Ivonne Nel
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| | - Carolin Münch
- Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Saikal Shamkeeva
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Mitja L. Heinemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Bahriye Aktas
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Jiang R, Li L, Li M. Biomimetic Construction of Degradable DNAzyme-Loaded Nanocapsules for Self-Sufficient Gene Therapy of Pulmonary Metastatic Breast Cancer. ACS NANO 2023; 17:22129-22144. [PMID: 37925681 DOI: 10.1021/acsnano.3c09581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Pulmonary metastasis of breast cancer is the major cause of deaths of breast cancer patients, but the effective treatment of pulmonary metastases is still lacking at present. Herein, a degradable biomimetic DNAzyme biocapsule is developed with the poly(ethylenimine) (PEI)-DNAzyme complex encapsulated in a Mn2+/Zn2+-coordinated inositol hexaphosphate (IP6) capsule modified with the cRGD targeting peptide for high-efficiency gene therapy of both primary and pulmonary metastatic breast tumors. This DNAzyme biocapsule is degradable inside acidic lysosomes, leading to the release of DNAzyme and abundant Mn2+/Zn2+ for catalytic cleavage of EGR-1 mRNA. We find that PEI promotes the lysosomal escape of the released DNAzyme. Both in vitro and in vivo experiments demonstrate the apparent downregulation of EGR-1 and Bcl-2 protein expression after treatment with the DNAzyme biocapsule, thereby inducing apoptotic death of tumor cells. We further verify that the DNAzyme biocapsule exhibits potent therapeutic efficacy against both primary and pulmonary metastatic breast tumors with significant inhibition of peri-pulmonary metastasis. This study provides a promising effective strategy for constructing degradable DNAzyme-based platforms with self-supply of abundant metal ion cofactors for high-efficiency gene therapy of metastatic breast cancer.
Collapse
Affiliation(s)
- Renting Jiang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Linhu Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
11
|
Yan J, Ma X, Liang D, Ran M, Zheng D, Chen X, Zhou S, Sun W, Shen X, Zhang H. An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer. Nat Commun 2023; 14:6905. [PMID: 37903795 PMCID: PMC10616286 DOI: 10.1038/s41467-023-42740-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
Collapse
Affiliation(s)
- Jiaqi Yan
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Xiaodong Ma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Danna Liang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Meixin Ran
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Xiaodong Chen
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xian Shen
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hongbo Zhang
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
12
|
Wu Y, Lewis W, Wai JL, Xiong M, Zheng J, Yang Z, Gordon C, Lu Y, New SY, Zhang XB, Lu Y. Ratiometric Detection of Zn 2+ Using DNAzyme-Based Bioluminescence Resonance Energy Transfer Sensors. CHEMISTRY (BASEL, SWITZERLAND) 2023; 5:1745-1759. [PMID: 38371491 PMCID: PMC10874629 DOI: 10.3390/chemistry5030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
While fluorescent sensors have been developed for monitoring metal ions in health and diseases, they are limited by the requirement of an excitation light source that can lead to photobleaching and a high autofluorescence background. To address these issues, bioluminescence resonance energy transfer (BRET)-based protein or small molecule sensors have been developed; however, most of them are not highly selective nor generalizable to different metal ions. Taking advantage of the high selectivity and generalizability of DNAzymes, we report herein DNAzyme-based ratiometric sensors for Zn2+ based on BRET. The 8-17 DNAzyme was labeled with luciferase and Cy3. The proximity between luciferase and Cy3 permiQed BRET when coelenterazine, the substrate for luciferase, was introduced. Adding samples containing Zn2+ resulted in a cleavage of the substrate strand, causing dehybridization of the DNAzyme construct, thus increasing the distance between Cy3 and luciferase and changing the BRET signals. Using these sensors, we detected Zn2+ in serum samples and achieved Zn2+ detection with a smartphone camera. Moreover, since the BRET pair is not the component that determines the selectivity of the sensors, this sensing platform has the potential to be adapted for the detection of other metal ions with other metal-dependent DNAzymes.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Whitney Lewis
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jing Luen Wai
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- School of Pharmacy, Faculty of Science and Engineering, University of No0ingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jiao Zheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chloe Gordon
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Ying Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Siu Yee New
- School of Pharmacy, Faculty of Science and Engineering, University of No0ingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Zhou M, Xu T, Xia K, Gao H, Li W, Zhai T, Gu H. Small DNAs That Specifically and Tightly Bind Transition Metal Ions. J Am Chem Soc 2023; 145:8776-8780. [PMID: 37052572 DOI: 10.1021/jacs.3c01276] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Specific DNA-binding to metal ions is a long-standing fundamental research topic with great potential to transform into nano/biotechnology and therapeutics applications. Herein, based on the mobility change of DNA in denaturing gels, we develop a selection strategy to discover a series of 40-45 nt small DNAs that can bind Zn2+ and Cd2+ specifically and tightly. The Zn2+- and Cd2+-bound DNA complexes can even tolerate harsh denaturing conditions of 8 M urea and 50 mM EDTA. The discovery not only exposes a new class of transition metal ion-binding DNAs but also provides potentially a new tool for targeting drug therapies based on metal ions.
Collapse
Affiliation(s)
- Mo Zhou
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200433, China
| | - Tianbin Xu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Kai Xia
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Haiqing Gao
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Tingting Zhai
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, and School of Global Health, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200433, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, and School of Global Health, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Zinc(II) Carboxylate Coordination Polymers with Versatile Applications. Molecules 2023; 28:molecules28031132. [PMID: 36770799 PMCID: PMC9918918 DOI: 10.3390/molecules28031132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
This review considers the applications of Zn(II) carboxylate-based coordination polymers (Zn-CBCPs), such as sensors, catalysts, species with potential in infections and cancers treatment, as well as storage and drug-carrier materials. The nature of organic luminophores, especially both the rigid carboxylate and the ancillary N-donor bridging ligand, together with the alignment in Zn-CBCPs and their intermolecular interaction modulate the luminescence properties and allow the sensing of a variety of inorganic and organic pollutants. The ability of Zn(II) to act as a good Lewis acid allowed the involvement of Zn-CBCPs either in dye elimination from wastewater through photocatalysis or in pathogenic microorganism or tumor inhibition. In addition, the pores developed inside of the network provided the possibility for some species to store gaseous or liquid molecules, as well as to deliver some drugs for improved treatment.
Collapse
|
15
|
Profiling demethylase activity using epigenetically inactivated DNAzyme. Biosens Bioelectron 2022; 207:114186. [DOI: 10.1016/j.bios.2022.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 11/02/2022]
|
16
|
Mahato RR, Shandilya E, Not Applicable S, Maiti S. Regulating Spatial Localization and Reactivity Biasness of DNAzymes by Metal Ions and Oligonucleotides. Chembiochem 2022; 23:e202200154. [PMID: 35762518 DOI: 10.1002/cbic.202200154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Chemical gradient sensing behavior of catalytically active colloids and enzymes is an area of immense interest owing to their importance in understanding fundamental spatiotemporal complexity pattern in living systems and designing of dynamic materials. Herein, we have shown peroxidase activity of DNAzyme (G-quadruplex-hemin complex tagged in a micron-sized glass bead) can be modulated by metal ions and metal ion-binding oligonucleotides. Next we demonstrated both experimentally and theoretically that the localization and product formation ability of the DNAzyme containing particle remains biased to the more catalytically active zone where concentration of metal ion (Hg2+) inhibitor is low. Interestingly, this biased localization can be broken by introduction of Hg2+ binding oligonucleotide in the system. Additionally, macroscopically asymmetric catalytic product distributed zone has also been achieved on this process, showing possibility in regulation in autonomous spatially controlled chemical process. This demonstration of autonomous modulation of the localization pattern and spatially specific enhanced product forming ability of DNAzymes will further enable in designing of responsive nucleic acid-based motile materials and surfaces.
Collapse
Affiliation(s)
- Rishi Ram Mahato
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Ekta Shandilya
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | | | - Subhabrata Maiti
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, Knowledge City, Sector-81, S.A.S. Nagar, Manauli P.O., 140306, Mohali, INDIA
| |
Collapse
|
17
|
Jakubec M, Pšenáková K, Svehlova K, Curtis EA. Optimizing the Chemiluminescence of a Light-Producing Deoxyribozyme. Chembiochem 2022; 23:e202200026. [PMID: 35286749 DOI: 10.1002/cbic.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/14/2022] [Indexed: 01/05/2023]
Abstract
Supernova is a chemiluminescent deoxyribozyme recently discovered in our group. It transfers the phosphate group from the 1,2-dioxetane substrate CDP-Star to its 5' hydroxyl group, which triggers a decomposition reaction and the production of light. Here we investigated the effects of reaction conditions on the ability of Supernova to generate a chemiluminescent signal (using a plate reader assay) and to phosphorylate itself (using a ligation assay). Our experiments indicate that multiple zinc ions are required for catalytic function, suggesting links between Supernova and protein enzymes that catalyze similar reactions. They also show how factors such as pH, potassium concentration, CDP-Star concentration, and DNA concentration affect the reaction. By combining information from different experiments, the rate enhancement of light production was increased by more than 1000-fold. These results should be useful for applications in which Supernova is used as a sensor.
Collapse
Affiliation(s)
- Martin Jakubec
- Institute of Organic Chemistry and Biochemistry, 160 00, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Karolína Pšenáková
- Institute of Organic Chemistry and Biochemistry, 160 00, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry, 160 00, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry, 160 00, Prague, Czech Republic
| |
Collapse
|
18
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
19
|
Jouha J, Xiong H. DNAzyme-Functionalized Nanomaterials: Recent Preparation, Current Applications, and Future Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105439. [PMID: 34802181 DOI: 10.1002/smll.202105439] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
DNAzyme-nanomaterial bioconjugates are a popular hybrid and have received major attention for diverse biomedical applications, such as bioimaging, biosensor development, cancer therapy, and drug delivery. Therefore, significant efforts are made to develop different strategies for the preparation of inorganic and organic nanoparticles (NPs) with specific morphologies and properties. DNAzymes functionalized with metal-organic frameworks (MOFs), gold nanoparticles (AuNPs), graphene oxide (GO), and molybdenum disulfide (MoS2 ) are introduced and summarized in detail in this review. Moreover, the focus is on representative examples of applications of DNAzyme-nanomaterials over recent years, especially in bioimaging, biosensing, phototherapy, and stimulation response delivery in living systems, with their several advantages and drawbacks. Finally, the perspective regarding the future directions of research addressing these challenges is also discussed and highlighted.
Collapse
Affiliation(s)
- Jabrane Jouha
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
20
|
Hong C, Wang Q, Chen Y, Gao Y, Shang J, Weng X, Liu X, Wang F. Intelligent demethylase-driven DNAzyme sensor for highly reliable metal-ion imaging in living cells. Chem Sci 2021; 12:15339-15346. [PMID: 34976354 PMCID: PMC8635203 DOI: 10.1039/d1sc05370a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
The accurate intracellular imaging of metal ions requires an exquisite site-specific activation of metal-ion sensors, for which the pervasive epigenetic regulation strategy can serve as an ideal alternative thanks to its orthogonal control feature and endogenous cell/tissue-specific expression pattern. Herein, a simple yet versatile demethylation strategy was proposed for on-site repairing-to-activating the metal-ion-targeting DNAzyme and for achieving the accurate site-specific imaging of metal ions in live cells. This endogenous epigenetic demethylation-regulating DNAzyme system was prepared by modifying the DNAzyme with an m6A methylation group that incapacitates the DNAzyme probe, thus eliminating possible off-site signal leakage, while the cell-specific demethylase-mediated removal of methylation modification could efficiently restore the initial catalytic DNAzyme for sensing metal ions, thus allowing a high-contrast bioimaging in live cells. This epigenetic repair-to-activate DNAzyme strategy may facilitate the robust visualization of disease-specific biomarkers for in-depth exploration of their biological functions.
Collapse
Affiliation(s)
- Chen Hong
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yuhui Gao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China .,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China .,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| |
Collapse
|
21
|
Biosorption of Zn(II) from Seawater Solution by the Microalgal Biomass of Tetraselmis marina AC16-MESO. Int J Mol Sci 2021; 22:ijms222312799. [PMID: 34884601 PMCID: PMC8657923 DOI: 10.3390/ijms222312799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
Biosorption refers to a physicochemical process where substances are removed from the solution by a biological material (live or dead) via adsorption processes governed by mechanisms such as surface complexation, ion exchange, and precipitation. This study aimed to evaluate the adsorption of Zn2+ in seawater using the microalgal biomass of Tetraselmis marina AC16-MESO “in vivo” and “not alive” at different concentrations of Zn2+ (0, 5, 10, and 20 mg L−1) at 72 h. Analysis was carried out by using the Langmuir isotherms and by evaluating the autofluorescence from microalgae. The maximum adsorption of Zn2+ by the Langmuir model using the Qmax parameter in the living microalgal biomass (Qmax = 0.03051 mg g−1) was more significant than the non-living microalgal biomass of T. marine AC16-MESO (Qmax = 0.02297 mg g−1). Furthermore, a decrease in fluorescence was detected in cells from T. marina AC16-MESO, in the following order: Zn2+ (0 < 20 < 5 < 10) mg L−1. Zn2+ was adsorbed quickly by living cells from T. marine AC16-MESO compared to the non-living microalgal biomass, with a decrease in photosystem II activities from 0 to 20 mg L−1 Zn2+ in living cells.
Collapse
|
22
|
Xu T, Zhang C, Xia K, Li W, Cao Y, Gu H. Small DNAs that Bind Nickel(II) Specifically and Tightly. Anal Chem 2021; 93:14912-14917. [PMID: 34734709 DOI: 10.1021/acs.analchem.1c04034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal recognition by nucleic acids provides an intriguing route for biosensing of metal. Toward this goal, a key prerequisite is the acquisition of nucleic acids that can selectively respond to specific metals. Herein, we report for the first time the discovery of two small DNAs that can specifically bind Ni2+ and discriminate against similar ions, particularly, Co2+. Their minimal effective constructs are 60-70 nucleotides (nt) in length with Ni2+ binding even at harsh denaturing conditions of 8 M urea and 50 mM EDTA. Using isothermal titration calorimetry (ITC), we estimated the dissociation constant (KD) of a representative DNA to be 24.0 ± 4.5 μM, with a 9:1 stoichiometry of Ni2+ bound to DNA. As being engineered into nanosized particles, these DNAs can act like nanosponges to specifically adsorb Ni2+ from artificial wastewater, demonstrating their potential as a novel molecular tool for high-quality nickel enrichment and detection.
Collapse
Affiliation(s)
- Tianbin Xu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200433, China
| | - Canyu Zhang
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200433, China
| | - Kai Xia
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200433, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200433, China
| | - Yichun Cao
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200433, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200433, China
| |
Collapse
|
23
|
Zou Z, He L, Deng X, Wang H, Huang Z, Xue Q, Qing Z, Lei Y, Yang R, Liu J. Zn
2+
‐Coordination‐Driven RNA Assembly with Retained Integrity and Biological Functions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Zou
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Libei He
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Xiangxi Deng
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Huangxiang Wang
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Ziyun Huang
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Qian Xue
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Zhihe Qing
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Yanli Lei
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Ronghua Yang
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research Ministry of Education College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
24
|
Zou Z, He L, Deng X, Wang H, Huang Z, Xue Q, Qing Z, Lei Y, Yang R, Liu J. Zn 2+ -Coordination-Driven RNA Assembly with Retained Integrity and Biological Functions. Angew Chem Int Ed Engl 2021; 60:22970-22976. [PMID: 34405498 DOI: 10.1002/anie.202110404] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Metal-coordination-directed biomolecule crosslinking in nature has been used for synthesizing various biopolymers, including DNA, peptides, proteins, and polysaccharides. However, the RNA biopolymer has been avoided so far, as due to the poor stability of the RNA molecules, the formation of a biopolymer may alter the biological function of the molecules. Herein, for the first time, we report Zn2+ -driven RNA self-assembly forming spherical nanoparticles while retaining the integrity and biological function of RNA. Various functional RNAs of different compositions, shapes, and lengths from 20 to nearly 1000 nucleotides were used, highlighting the versatility of this approach. The assembled nanospheres possess a superior RNA-loading efficiency, pharmacokinetics, and bioavailability. In-vitro and in-vivo evaluation demonstrated mRNA delivery for expressing GFP proteins, and microRNA delivery to triple-negative breast cancer. This coordination-directed self-assembly behavior amplifies the horizons of RNA coordination chemistry and the application scope of RNA-based therapeutics.
Collapse
Affiliation(s)
- Zhen Zou
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Libei He
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Xiangxi Deng
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Huangxiang Wang
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Ziyun Huang
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Qian Xue
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Zhihe Qing
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Yanli Lei
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Ronghua Yang
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China.,Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
25
|
|
26
|
Zhang C, Li Q, Xu T, Li W, He Y, Gu H. New DNA-hydrolyzing DNAs isolated from an ssDNA library carrying a terminal hybridization stem. Nucleic Acids Res 2021; 49:6364-6374. [PMID: 34057476 PMCID: PMC8216280 DOI: 10.1093/nar/gkab439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
DNA-hydrolyzing DNAs represent an attractive type of DNA-processing catalysts distinctive from the protein-based restriction enzymes. The innate DNA property has enabled them to readily join DNA-based manipulations to promote the development of DNA biotechnology. A major in vitro selection strategy to identify these DNA catalysts relies tightly on the isolation of linear DNAs processed from a circular single-stranded (ss) DNA sequence library by self-hydrolysis. Herein, we report that by programming a terminal hybridization stem in the library, other than the previously reported classes (I & II) of deoxyribozymes, two new classes (III & IV) were identified with the old selection strategy to site-specifically hydrolyze DNA in the presence of Zn2+. Their representatives own a catalytic core consisting of ∼20 conserved nucleotides and a half-life of ∼15 min at neutral pH. In a bimolecular construct, class III exhibits unique broad generality on the enzyme strand, which can be potentially harnessed to engineer DNA-responsive DNA hydrolyzers for detection of any target ssDNA sequence. Besides the new findings, this work should also provide an improved approach to select for DNA-hydrolyzing deoxyribozymes that use various molecules and ions as cofactors.
Collapse
Affiliation(s)
- Canyu Zhang
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Qingting Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Tianbin Xu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Yungang He
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
27
|
Xing S, Lin Y, Cai L, Basa PN, Shigemoto AK, Zheng C, Zhang F, Burdette SC, Lu Y. Detection and Quantification of Tightly Bound Zn 2+ in Blood Serum Using a Photocaged Chelator and a DNAzyme Fluorescent Sensor. Anal Chem 2021; 93:5856-5861. [PMID: 33787228 PMCID: PMC9169884 DOI: 10.1021/acs.analchem.1c00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNAzymes have emerged as a powerful class of sensors for metal ions due to their high selectivity over a wide range of metal ions, allowing for on-site and real-time detection. Despite much progress made in this area, detecting and quantifying tightly bound metal ions, such as those in the blood serum, remain a challenge because the DNAzyme sensors reported so far can detect only mobile metal ions that are accessible to bind the DNAzymes. To overcome this major limitation, we report the use of a photocaged chelator, XDPAdeCage to extract the Zn2+ from the blood serum and then release the chelated Zn2+ into a buffer using 365 nm light for quantification by an 8-17 DNAzyme sensor. Protocols to chelate, uncage, extract, and detect metal ions in the serum have been developed and optimized. Because DNAzyme sensors for other metal ions have already been reported and more DNAzyme sensors can be obtained using in vitro selection, the method reported in this work will significantly expand the applications of the DNAzyme sensors from sensing metal ions that are not only free but also bound to other biomolecules in biological and environmental samples.
Collapse
Affiliation(s)
- Shige Xing
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Yao Lin
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Forensic Analytical Toxicology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liangyuan Cai
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prem N Basa
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, United States
| | - Austin K Shigemoto
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, United States
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Shawn C Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Abstract
In this review, DNA and nanomaterial based catalysts for porphyrin metalation reactions are summarized, including the selection of DNAzymes, choice of nanomaterials, their catalytic mechanisms, and applications of the reactions.
Collapse
Affiliation(s)
- Hualin Yang
- College of Life Science
- Yangtze University
- Jingzhou
- China
- Department of Chemistry
| | - Yu Zhou
- College of Life Science
- Yangtze University
- Jingzhou
- China
- College of Animal Science
| | - Juewen Liu
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|