1
|
Tang Q, Precit MR, Thomason MK, Blanc SF, Ahmed-Qadri F, McFarland AP, Wolter DJ, Hoffman LR, Woodward JJ. Thymidine starvation promotes c-di-AMP-dependent inflammation during pathogenic bacterial infection. Cell Host Microbe 2022; 30:961-974.e6. [PMID: 35439435 DOI: 10.1016/j.chom.2022.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Antimicrobials can impact bacterial physiology and host immunity with negative treatment outcomes. Extensive exposure to antifolate antibiotics promotes thymidine-dependent Staphylococcus aureus small colony variants (TD-SCVs), commonly associated with worse clinical outcomes. We show that antibiotic-mediated disruption of thymidine synthesis promotes elevated levels of the bacterial second messenger cyclic di-AMP (c-di-AMP), consequently inducing host STING activation and inflammation. An initial antibiotic screen in Firmicutes revealed that c-di-AMP production was largely driven by antifolate antibiotics targeting dihydrofolate reductase (DHFR), which promotes folate regeneration required for thymidine biosynthesis. Additionally, TD-SCVs exhibited excessive c-di-AMP production and STING activation in a thymidine-dependent manner. Murine lung infection with TD-SCVs revealed STING-dependent elevation of proinflammatory cytokines, causing higher airway neutrophil infiltration and activation compared with normal-colony S. aureus and hemin-dependent SCVs. Collectively, our results suggest that thymidine metabolism disruption in Firmicutes leads to elevated c-di-AMP-mediated STING-dependent inflammation, with potential impacts on antibiotic usage and infection outcomes.
Collapse
Affiliation(s)
- Qing Tang
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Mimi R Precit
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Maureen K Thomason
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Sophie F Blanc
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Fariha Ahmed-Qadri
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Adelle P McFarland
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Daniel J Wolter
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Lucas R Hoffman
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|