1
|
Fenyvesi É, Berkl Z, Ligethy L, Fekete-Kertész I, Csizmazia M, Malanga M, Puskás I, Szőcs L, Iványi R, Kese I, Varga E, Szente L, Molnár M. Long-Chain Alkylthio Cyclodextrin Derivatives for Modulation of Quorum-Sensing-Based Bioluminescence in Aliivibrio fischeri Model System. Int J Mol Sci 2024; 25:7139. [PMID: 39000246 PMCID: PMC11241527 DOI: 10.3390/ijms25137139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Quorum sensing (QS) allows bacteria to coordinate their activities by producing and detecting low-molecular-weight signal molecules based on population density, thereby controlling the infectivity of bacteria through various virulence factors. Quorum-sensing inhibition is a promising approach to tackle bacterial communication. Cyclodextrins (CDs) are a class of cyclic oligosaccharides that reversibly encapsulate the acyl chain of the signal molecules, thereby preventing their binding to receptors and interrupting bacterial communication. This results in the inhibition of the expression of various properties, including different virulence factors. To examine the potential quorum-quenching (QQ) ability of newly prepared cyclodextrin derivatives, we conducted short-term tests using Aliivibrio fischeri, a heterotrophic marine bacterium capable of bioluminescence controlled by quorum sensing. α- and β-cyclodextrins monosubstituted with alkylthio moieties and further derivatized with quaternary ammonium groups were used as the test agents. The effect of these cyclodextrins on the quorum-sensing system of A. fischeri was investigated by adding them to an exponential growth phase of the culture and then measuring bioluminescence intensity, population growth, and cell viability. Our results demonstrate that the tested cyclodextrins have an inhibitory effect on the quorum-sensing system of A. fischeri. The inhibitory effect varies based on the length of the alkyl chain, with alkylthio substitution enhancing it and the presence of quaternary ammonium groups decreasing it. Our findings suggest that cyclodextrins can be a promising therapeutic agent for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Zsófia Berkl
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Laura Ligethy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Ildikó Fekete-Kertész
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Márton Csizmazia
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Milo Malanga
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - István Puskás
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Levente Szőcs
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Róbert Iványi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - István Kese
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Erzsébet Varga
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| |
Collapse
|
2
|
Fekete-Kertész I, Berkl Z, Buda K, Fenyvesi É, Szente L, Molnár M. Quorum quenching effect of cyclodextrins on the pyocyanin and pyoverdine production of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2024; 108:271. [PMID: 38517512 PMCID: PMC10959793 DOI: 10.1007/s00253-024-13104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
Various virulence determinants in Pseudomonas aeruginosa are regulated by the quorum sensing (QS) network producing and releasing signalling molecules. Two of these virulence determinants are the pyocyanin and pyoverdine, which interfere with multiple cellular functions during infection. The application of QS-inhibiting agents, such as cyclodextrins (CDs), appears to be a promising approach. Further to method development, this research tested in large-volume test systems the effect of α- and β-CD (ACD, BCD) at 1, 5, and 10 mM concentrations on the production of pyocyanin in the P. aeruginosa model system. The concentration and time-dependent quorum quenching effect of native CDs and their derivatives on pyoverdine production was tested in a small-volume high-throughput system. In the large-volume system, both ACD and BCD significantly inhibited pyocyanin production, but ACD to a greater extent. 10 mM ACD resulted in 58% inhibition, while BCD only ~40%. Similarly, ACD was more effective in the inhibition of pyoverdine production; nevertheless, the results of RMANOVA demonstrated the significant efficiency of both ACD and BCD, as well as their derivatives. Both the contact time and the cyclodextrin treatments significantly influenced pyoverdine production. In this case, the inhibitory effect of ACD after 48 h at 12.5 mM was 57%, while the inhibitory effect of BCD and its derivatives was lower than 40%. The high-level significant inhibition of both pyocyanin and pyoverdine production by ACD was detectable. Consequently, the potential value of CDs as QS inhibitors and the antivirulence strategy should be considered. KEYPOINTS: • Applicability of a simplified method for quantification of pyocyanin production was demonstrated. • The cyclodextrins significantly affected the pyocyanin and pyoverdine production. • The native ACD exhibited the highest attenuation in pyoverdine production.
Collapse
Affiliation(s)
- Ildikó Fekete-Kertész
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Zsófia Berkl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Kata Buda
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos u. 7., Budapest, H-1097, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos u. 7., Budapest, H-1097, Hungary
| | - Mónika Molnár
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary.
| |
Collapse
|
3
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Jonkergouw C, Beyeh NK, Osmekhina E, Leskinen K, Taimoory SM, Fedorov D, Anaya-Plaza E, Kostiainen MA, Trant JF, Ras RHA, Saavalainen P, Linder MB. Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Nat Commun 2023; 14:2141. [PMID: 37059703 PMCID: PMC10104825 DOI: 10.1038/s41467-023-37749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
The limited diversity in targets of available antibiotic therapies has put tremendous pressure on the treatment of bacterial pathogens, where numerous resistance mechanisms that counteract their function are becoming increasingly prevalent. Here, we utilize an unconventional anti-virulence screen of host-guest interacting macrocycles, and identify a water-soluble synthetic macrocycle, Pillar[5]arene, that is non-bactericidal/bacteriostatic and has a mechanism of action that involves binding to both homoserine lactones and lipopolysaccharides, key virulence factors in Gram-negative pathogens. Pillar[5]arene is active against Top Priority carbapenem- and third/fourth-generation cephalosporin-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, suppressing toxins and biofilms and increasing the penetration and efficacy of standard-of-care antibiotics in combined administrations. The binding of homoserine lactones and lipopolysaccharides also sequesters their direct effects as toxins on eukaryotic membranes, neutralizing key tools that promote bacterial colonization and impede immune defenses, both in vitro and in vivo. Pillar[5]arene evades both existing antibiotic resistance mechanisms, as well as the build-up of rapid tolerance/resistance. The versatility of macrocyclic host-guest chemistry provides ample strategies for tailored targeting of virulence in a wide range of Gram-negative infectious diseases.
Collapse
Affiliation(s)
- Christopher Jonkergouw
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland.
| | - Ngong Kodiah Beyeh
- Oakland University, Department of Chemistry, 146 Library Drive, Rochester, MI, 48309-4479, USA
- Aalto University, School of Science, Department of Applied Physics, Puumiehenkuja 2, Espoo, Finland
| | - Ekaterina Osmekhina
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Katarzyna Leskinen
- University of Helsinki, Translational Immunology Research Program, Haartmaninkatu 8, 0014, Helsinki, Finland
| | - S Maryamdokht Taimoory
- University of Windsor, Department of Chemistry and Biochemistry, Windsor, ON, N9B 3P4, Canada
- University of Michigan, Department of Chemistry, Ann Arbor, MI, USA
| | - Dmitrii Fedorov
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Eduardo Anaya-Plaza
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Mauri A Kostiainen
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - John F Trant
- University of Windsor, Department of Chemistry and Biochemistry, Windsor, ON, N9B 3P4, Canada
| | - Robin H A Ras
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
- Aalto University, School of Science, Department of Applied Physics, Puumiehenkuja 2, Espoo, Finland
| | - Päivi Saavalainen
- University of Helsinki, Translational Immunology Research Program, Haartmaninkatu 8, 0014, Helsinki, Finland.
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
| | - Markus B Linder
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland.
| |
Collapse
|
5
|
Effect of Cyclodextrins on the Biofilm Formation Capacity of Pseudomonas aeruginosa PAO1. Molecules 2022; 27:molecules27113603. [PMID: 35684540 PMCID: PMC9181962 DOI: 10.3390/molecules27113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Quorum sensing (QS) is a population-density-dependent communication process of microorganisms to coordinate their activities by producing and detecting low-molecular-weight signal molecules. In pathogenic bacteria, the property controlled by QS is often related to infectivity, e.g., biofilm formation. Molecular encapsulation of the QS signals is an innovative method to prevent the signals binding to the receptors and to attenuate QS. Cyclodextrins (CDs) may form an inclusion complex with the signals, thus reducing the communication (quorum quenching, QQ). A systematic study was performed with α-, β-cyclodextrin, and their random methylated, quaternary amino and polymer derivatives to evaluate and compare their effects on the biofilm formation of Pseudomonas aeruginosa. To examine the concentration-, temperature- and time-dependency of the QQ effect, the CDs were applied at a 0.1–12.5 mM concentration range, and biofilm formation was studied after 6, 24, 48 and 72 h at 22 and 30 °C. According to the results, the QS mechanism was significantly inhibited; the size of the cavity, the structure of the substituents, as well as the monomeric or polymeric character together with the concentration of the CDs have been identified as key influencing factors of biofilm formation. Statistically determined effective concentration values demonstrated outstanding efficiency (higher than 80% inhibition) of α-CD and its random methylated and polymer derivatives both on the short and long term. In summary, the potential value of CDs as inhibitors of QS should be considered since the inhibition of biofilm formation could significantly impact human health and the environment.
Collapse
|
6
|
Saji VS. Recent Updates on Supramolecular-Based Drug Delivery - Macrocycles and Supramolecular Gels. CHEM REC 2022; 22:e202200053. [PMID: 35510981 DOI: 10.1002/tcr.202200053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Supramolecules-based drug delivery has attracted significant recent research attention as it could enhance drug solubility, retention time, targeting, and stimuli responsiveness. Among the different supramolecules and assemblies, the macrocycles and the supramolecular hydrogels are the two important categories investigated to a greater extent. Here, we provide the most recent advancements in these categories. Under macrocycles, reports on drug delivery by cyclodextrins, cucurbiturils, calixarenes/pillararenes, crown ethers and porphyrins are detailed. The second category discusses the supramolecular hydrogels of macrocycles/polymers and low molecular weight gelators. The updated information provided could be helpful to advance R & D in this vital area.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
7
|
Farhana A, Koh AEH, Ling Mok P, Alsrhani A, Khan YS, Subbiah SK. Camptothecin Encapsulated in β-Cyclodextrin-EDTA-Fe 3O 4 Nanoparticles Induce Metabolic Reprogramming Repair in HT29 Cancer Cells through Epigenetic Modulation: A Bioinformatics Approach. NANOMATERIALS 2021; 11:nano11123163. [PMID: 34947512 PMCID: PMC8705212 DOI: 10.3390/nano11123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Cancer progresses through a distinctive reprogramming of metabolic pathways directed by genetic and epigenetic modifications. The hardwired changes induced by genetic mutations are resilient, while epigenetic modifications are softwired and more vulnerable to therapeutic intervention. Colon cancer is no different. This gives us the need to explore the mechanism as an attractive therapeutic target to combat colon cancer cells. We have previously established the enhanced therapeutic efficacy of a newly formulated camptothecin encapsulated in β-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF) in colon cancer cells. We furthered this study by carrying out RNA sequencing (RNA-seq) to underscore specific regulatory signatures in the CPT-CEF treated versus untreated HT29 cells. In the study, we identified 95 upregulated and 146 downregulated genes spanning cellular components and molecular and metabolic functions. We carried out extensive bioinformatics analysis to harness genes potentially involved in epigenetic modulation as either the cause or effect of metabolic rewiring exerted by CPT-CEF. Significant downregulation of 13 genes involved in the epigenetic modulation and 40 genes from core metabolism was identified. Three genes, namely, DNMT-1, POLE3, and PKM-2, were identified as the regulatory overlap between epigenetic drivers and metabolic reprogramming in HT29 cells. Based on our results, we propose a possible mechanism that intercepts the two functional axes, namely epigenetic control, and metabolic modulation via CPT-CEF in colon cancer cells, which could skew cancer-induced metabolic deregulation towards metabolic repair. Thus, the study provides avenues for further validation of transcriptomic changes affected by these deregulated genes at epigenetic level, and ultimately may be harnessed as targets for regenerating normal metabolism in colon cancer with better treatment potential, thereby providing new avenues for colon cancer therapy.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (P.L.M.); (A.A.)
- Correspondence: (A.F.); (S.K.S.)
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (P.L.M.); (A.A.)
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (P.L.M.); (A.A.)
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Bharath University, Selaiyur, Chennai 600073, India
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: (A.F.); (S.K.S.)
| |
Collapse
|