1
|
Petri YD, FitzGerald FG, Raines RT. Chemoselective Reagents for the Traceless Bioreversible Modification of Native Proteins. Bioconjug Chem 2024; 35:1300-1308. [PMID: 39206956 DOI: 10.1021/acs.bioconjchem.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nature utilizes bioreversible post-translational modifications (PTMs) to spatiotemporally diversify protein function. Mimicking Nature's approach, chemists have developed a variety of chemoselective regents for traceless, bioreversible modification of native proteins. These strategies have found utility in the development of reversible covalent inhibitors and degraders as well as the synthesis of functional protein conjugates for delivery into cells. This Viewpoint provides a snapshot of such tools, which currently cover Cys, Ser, Thr, Lys, Asp, and Glu residues and the N terminus. Additionally, we explore how bioreversible reagents, originally developed by research communities with differing objectives, can be utilized synergistically. Looking forward, we discuss the need for developing bioreversible reagents for labeling His, Tyr, Arg, Trp, Asn, Gln, and Met residues and the C-terminus as well as the installation of dynamic PTMs. Finally, to broaden the applicability of these tools, we point out the importance of developing modular release scaffolds with tunable release times and responsiveness to multiple endogenous triggers. We anticipate that this Viewpoint will catalyze further research and technological breakthroughs in this rapidly evolving field.
Collapse
Affiliation(s)
- Yana D Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Forrest G FitzGerald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Drozd M, Kobylska E, Żmieńko M, Chudy M. Sensitive and label-free SPR biosensing platforms for high-throughput screening of plasma membrane receptors interactions with insulin-like targets of hypoglycaemic activity. Talanta 2024; 274:125914. [PMID: 38537356 DOI: 10.1016/j.talanta.2024.125914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 05/04/2024]
Abstract
Progress in medical sciences aims for tailored therapy of civilization diseases like diabetes. Preclinical screening of new medicines superior to insulin should include the verification of their affinity to the membrane receptors naturally stimulated by this hormone: insulin receptor isoforms A and B and insulin-like growth factor receptor. Considering that the affinity constants obtained using different experimental conditions are incomparable, it is essential to develop a robust and reliable method to analyze these interactions. The versatile SPR platform developed in this study enables the evaluation of the bioactivity of hypoglycaemic molecules. Thanks to the comprehensive characterization of miscellaneous aspects of the analytical platform, including the design of the SPR biosensor receptor layer, ensuring interaction specificity, as well as the quality control of the standards used (human insulin, HI; long-acting insulin analog: glargine, Gla), the feasibility of the method of equilibrium and kinetic constants determination for insulin-like targets was confirmed. SPR assays constructed in the direct format using IR-A, IR-B, and IGF1-R receptor proteins show high sensitivities and low detection limits towards insulin and glargine detection in the range of 18.3-53.3 nM with no signs of mass transport limitations. The improved analytical performance and stability of SPR biosensors favor the acquisition of good-quality kinetic data, while preservation of receptors activity after binding to long-chain carboxymethyldextran, combined with spontaneous regeneration, results in stability and long shelf life of the biosensor, which makes it useful for label-free insulin analogs biosensing and thus extensive screening in diabetic drugs discovery.
Collapse
Affiliation(s)
- Marcin Drozd
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland; Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822, Warsaw, Poland
| | - Ewa Kobylska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland; Łukasiewicz - Industrial Chemistry Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Małgorzata Żmieńko
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Michał Chudy
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
3
|
Yu Y, Tian W, Grauffel C, Lin W, Hsieh M, Wu P, Lee H, Peng C, Lin P, Chu H, Lim C, Chang TW. An Antibody-Drug Conjugate for Multiple Myeloma Prepared by Multi-Arm Linkers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307852. [PMID: 38477561 PMCID: PMC11132082 DOI: 10.1002/advs.202307852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Indexed: 03/14/2024]
Abstract
First-line treatment of multiple myeloma, a prevalent blood cancer lacking a cure, using anti-CD38 daratumumab antibody and lenalidomide is often inadequate due to relapse and severe side effects. To enhance drug safety and efficacy, an antibody-drug conjugate, TE-1146, comprising six lenalidomide drug molecules site-specifically conjugated to a reconfigured daratumumab to deliver cytotoxic lenalidomide to tumor cells is developed. TE-1146 is prepared using the HighDAR platform, which employs i) a maleimide-containing "multi-arm linker" to conjugate multiple drug molecules creating a drug bundle, and ii) a designed peptide with a Zn2+-binding cysteine at the C-termini of a reconfigured daratumumab for site-specific drug bundle conjugation. It is shown that TE-1146 remains intact and effectively enters CD38-expressing tumor cells, releasing lenalidomide, leading to enhanced cell-killing effects compared to lenalidomide/daratumumab alone or their combination. This reveals the remarkable potency of lenalidomide once internalized by myeloma cells. TE-1146 precisely delivers lenalidomide to target CD38-overexpressing tumor cells. In contrast, lenalidomide without daratumumab cannot easily enter cells, whereas daratumumab without lenalidomide relies on Fc-dependent effector functions to kill tumor cells.
Collapse
Affiliation(s)
- Yueh‐Hsiang Yu
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Wei‐Ting Tian
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | | | - Wei‐Chen Lin
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Ming‐Yu Hsieh
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Pei‐Wen Wu
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Hui‐Ju Lee
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Chi‐Jiun Peng
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Pei‐Hsuan Lin
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Hsing‐Mao Chu
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Carmay Lim
- Institute of Biomedical SciencesAcademia SinicaAcademia Rd.Taipei115Taiwan
| | - Tse Wen Chang
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| |
Collapse
|
4
|
Maes D, Nicque M, Iftikhar M, Winne JM. Phenylpropynones as Selective Disulfide Rebridging Bioconjugation Reagents. Org Lett 2024; 26:895-899. [PMID: 38259037 DOI: 10.1021/acs.orglett.3c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Simple 1-phenylpropynones undergo a selective double thia-Michael addition with thiols in buffered media, yielding an interesting dithioacetal linkage joining two thiols. The reactivity of various Michael-alkyne reagents is compared in this chemoselective, atom economical, and non-oxidative cross-linking of two thiols. The stability and chemical reactivity of the dithioacetal links are studied, and the utility of the disulfide targeting bioconjugation methodology is shown by the selective rebridging of native cyclic peptides after the reductive cleavage of their disulfide bridge.
Collapse
Affiliation(s)
- Diederick Maes
- Ghent University, Department of Organic and Macromolecular Chemistry, Organic Synthesis Group, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| | - Marvin Nicque
- Ghent University, Department of Organic and Macromolecular Chemistry, Organic Synthesis Group, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| | - Mehwish Iftikhar
- Ghent University, Department of Organic and Macromolecular Chemistry, Organic Synthesis Group, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| | - Johan M Winne
- Ghent University, Department of Organic and Macromolecular Chemistry, Organic Synthesis Group, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| |
Collapse
|
5
|
Mir MH, Parmar S, Singh C, Kalia D. Location-agnostic site-specific protein bioconjugation via Baylis Hillman adducts. Nat Commun 2024; 15:859. [PMID: 38286847 PMCID: PMC10825175 DOI: 10.1038/s41467-024-45124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Proteins labelled site-specifically with small molecules are valuable assets for chemical biology and drug development. The unique reactivity profile of the 1,2-aminothiol moiety of N-terminal cysteines (N-Cys) of proteins renders it highly attractive for regioselective protein labelling. Herein, we report an ultrafast Z-selective reaction between isatin-derived Baylis Hillman adducts and 1,2-aminothiols to form a bis-heterocyclic scaffold, and employ it for stable protein bioconjugation under both in vitro and live-cell conditions. We refer to our protein bioconjugation technology as Baylis Hillman orchestrated protein aminothiol labelling (BHoPAL). Furthermore, we report a lipoic acid ligase-based technology for introducing the 1,2-aminothiol moiety at any desired site within proteins, rendering BHoPAL location-agnostic (not limited to N-Cys). By using this approach in tandem with BHoPAL, we generate dually labelled protein bioconjugates appended with different labels at two distinct specific sites on a single protein molecule. Taken together, the protein bioconjugation toolkit that we disclose herein will contribute towards the generation of both mono and multi-labelled protein-small molecule bioconjugates for applications as diverse as biophysical assays, cellular imaging, and the production of therapeutic protein-drug conjugates. In addition to protein bioconjugation, the bis-heterocyclic scaffold we report herein will find applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Mudassir H Mir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Sangeeta Parmar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Chhaya Singh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Dimpy Kalia
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India.
| |
Collapse
|
6
|
Spears RJ, Chudasama V. Recent advances in N- and C-terminus cysteine protein bioconjugation. Curr Opin Chem Biol 2023; 75:102306. [PMID: 37236135 DOI: 10.1016/j.cbpa.2023.102306] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 05/28/2023]
Abstract
Advances in the site-specific chemical modification of proteins, also referred to as protein bioconjugation, have proved instrumental in revolutionary approaches to designing new protein-based therapeutics. Of the sites available for protein modification, cysteine residues or the termini of proteins have proved especially popular owing to their favorable properties for site-specific modification. Strategies that, therefore, specifically target cysteine at the termini offer a combination of these favorable properties of cysteine and termini bioconjugation. In this review, we discuss these strategies with a particular focus on those reported recently and provide our opinion on the future direction of the field.
Collapse
Affiliation(s)
- Richard J Spears
- Department of Chemistry, University College London, 20 Gordon Street, London, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, 20 Gordon Street, London, UK.
| |
Collapse
|
7
|
Serebryany E, Zhao VY, Park K, Bitran A, Trauger SA, Budnik B, Shakhnovich EI. Systematic conformation-to-phenotype mapping via limited deep sequencing of proteins. Mol Cell 2023; 83:1936-1952.e7. [PMID: 37267908 PMCID: PMC10281453 DOI: 10.1016/j.molcel.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/29/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Victor Y Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sunia A Trauger
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Bogdan Budnik
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
Dai J, Wilhelm KB, Bischoff AJ, Pereira JH, Dedeo MT, García-Almedina DM, Adams PD, Groves JT, Francis MB. A Membrane-Associated Light-Harvesting Model is Enabled by Functionalized Assemblies of Gene-Doubled TMV Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207805. [PMID: 36811150 DOI: 10.1002/smll.202207805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/26/2023] [Indexed: 05/18/2023]
Abstract
Photosynthetic light harvesting requires efficient energy transfer within dynamic networks of light-harvesting complexes embedded within phospholipid membranes. Artificial light-harvesting models are valuable tools for understanding the structural features underpinning energy absorption and transfer within chromophore arrays. Here, a method for attaching a protein-based light-harvesting model to a planar, fluid supported lipid bilayer (SLB) is developed. The protein model consists of the tobacco mosaic viral capsid proteins that are gene-doubled to create a tandem dimer (dTMV). Assemblies of dTMV break the facial symmetry of the double disk to allow for differentiation between the disk faces. A single reactive lysine residue is incorporated into the dTMV assemblies for the site-selective attachment of chromophores for light absorption. On the opposing dTMV face, a cysteine residue is incorporated for the bioconjugation of a peptide containing a polyhistidine tag for association with SLBs. The dual-modified dTMV complexes show significant association with SLBs and exhibit mobility on the bilayer. The techniques used herein offer a new method for protein-surface attachment and provide a platform for evaluating excited state energy transfer events in a dynamic, fully synthetic artificial light-harvesting system.
Collapse
Affiliation(s)
- Jing Dai
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Amanda J Bischoff
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jose H Pereira
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michel T Dedeo
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Paul D Adams
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Hashad RA, Jap E, Casey JL, Candace Ho YT, Wright A, Thalmann C, Sleeman M, Lupton DW, Hagemeyer CE, Cryle MJ, Robert R, Alt K. Chemoselective Methionine Labelling of Recombinant Trastuzumab Shows High In Vitro and In Vivo Tumour Targeting. Chemistry 2023; 29:e202202491. [PMID: 36451579 PMCID: PMC10946977 DOI: 10.1002/chem.202202491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
A highly effective 2-step system for site-specific antibody modification and conjugation of the monoclonal antibody Herceptin (commercially available under Trastuzumab) in a cysteine-independent manner was used to generate labelled antibodies for in vivo imaging. The first step contains redox-activated chemical tagging (ReACT) of thioethers via engineered methionine residues to introduce specific alkyne moieties, thereby offering a novel easy way to fundamentally change the process of antibody bioconjugation. The second step involves modification of the introduced alkyne via azide-alkyne cycloaddition 'click' conjugation. The versatility of this 2-step approach is demonstrated here by the selective incorporation of a fluorescent dye but can also be applied to a wide variety of different conjugation partners depending on the desired application in a facile manner. Methionine-modified antibodies were characterised in vitro, and the diagnostic potential of the most promising variant was further analysed in an in vivo xenograft animal model using a fluorescence imaging modality. This study demonstrates how methionine-mediated antibody conjugation offers an orthogonal and versatile route to the generation of tailored antibody conjugates with in vivo applicability.
Collapse
Affiliation(s)
- Rania A. Hashad
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
- Department of Pharmaceutics and Industrial PharmacyFaculty of PharmacyAin Shams University1181CairoEgypt
| | - Edwina Jap
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | - Joanne L. Casey
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Y. T. Candace Ho
- Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria 3800 (Australia)EMBL AustraliaMonash UniversityClaytonVictoria3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClayton3800VictoriaAustralia
| | - Alexander Wright
- School of ChemistryMonash UniversityClayton3800VictoriaAustralia
| | - Claudia Thalmann
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Mark Sleeman
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - David W. Lupton
- School of ChemistryMonash UniversityClayton3800VictoriaAustralia
| | - Christoph E. Hagemeyer
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | - Max J. Cryle
- Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria 3800 (Australia)EMBL AustraliaMonash UniversityClaytonVictoria3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClayton3800VictoriaAustralia
| | - Remy Robert
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Karen Alt
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| |
Collapse
|