1
|
Zhang Z, Guo Y, Gao X, Wang X, Jin C. Role of histone methyltransferase KMT2D in BMSC osteogenesis via AKT signaling. Regen Ther 2024; 26:775-782. [PMID: 39309396 PMCID: PMC11414574 DOI: 10.1016/j.reth.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Understanding the precise mechanism of BMSC (bone marrow mesenchymal stem cell) osteogenesis is critical for metabolic bone diseases and bone reconstruction. The histone-lysine N-methyltransferase 2D (KMT2D) acts as an important methyltransferase related with congenital skeletal disorders, yet the function of KMT2D in osteogenesis was unclear. Here we found that KMT2D expression was decreased in BMSCs collected from ovariectomized mice. Moreover, during human BMSC differentiation under mineralization induction, the mRNA level of KMT2D was gradually elevated. After KMT2D knockdown, the in vitro osteogenic differentiation of BMSCs was inhibited, while the in vivo bone formation potential of BMSCs was attenuated. Further, in BMSCs, KMT2D knockdown reduced the level of phosphorylated protein kinase B (p-AKT). SC-79, a common activator of AKT signaling, reversed the suppressing influence of KMT2D knockdown on BMSCs differentiation towards osteoblast. These results indicate that the KMT2D-AKT pathway plays an essential role in the osteogenesis process of human BMSCs (hBMSCs), which might provide new avenues for the molecular medicine of bone diseases and regeneration.
Collapse
Affiliation(s)
- Zhichun Zhang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Yanyan Guo
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100101, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100101, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| |
Collapse
|
2
|
Shao L, Fang Q, Shi C, Zhang Y, Xia C, Zhang Y, Wang J, Chen F. Bone marrow mesenchymal stem cells inhibit ferroptosis via regulating the Nrf2-keap1/p53 pathway to ameliorate chronic kidney disease injury in the rats. J Recept Signal Transduct Res 2023; 43:9-18. [PMID: 36883687 DOI: 10.1080/10799893.2023.2185083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
PURPOSE Although bone marrow mesenchymal stem cells (BMMSCs) have been reported to exhibit a protective effect on animal models of chronic kidney disease (CKD), the exact mechanisms involved require further investigation. This study aims to investigate the underlying molecular mechanisms of BMMSCs in inhibiting ferroptosis and preventing an Adriamycin (ADR)-induced CKD injury. METHODS A rat model of long-term CKD induced through the injection of ADR administered twice weekly via the tail vein was used in this study. After BMMSCs were systemically administered through the renal artery, pathological staining, western blotting, ELISA, and transmission electron microscopy were used to analyze ferroptosis. RESULTS Analyses of renal function and histopathological findings indicated that ADR-mediated renal dysfunction improved in response to the BMMSC treatment, which was also sufficient to mediate the partial reversal of renal injury and mitochondrial pathological changes. BMMSCs decreased the ferrous iron (Fe2+) and reactive oxygen species and elevated glutathione (GSH) and GSH peroxidase 4. Moreover, the BMMSC treatment activated the expression of ferroptosis-related regulator NF-E2-related factor 2 (Nrf2) and inhibited Keap1 and p53 in CKD rat kidney tissues. CONCLUSIONS BMMSCs alleviate CKD, possibly resulting from the inhibition of kidney ferroptosis by regulating the Nrf2-Keap1/p53 pathway.
Collapse
Affiliation(s)
- Lishi Shao
- Department of Radiology, Kunming Medical University & The Second Affiliated Hospital, Kunming, Yunnan
| | - Qixiang Fang
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi
| | - Chen Shi
- Department of Radiology, Kunming Medical University & The Second Affiliated Hospital, Kunming, Yunnan
| | - Ya Zhang
- Department of Radiology, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Chunjuan Xia
- Department of Radiology, Kunming Medical University & The Second Affiliated Hospital, Kunming, Yunnan
| | - Yifan Zhang
- Department of Radiology, Kunming Medical University & The Second Affiliated Hospital, Kunming, Yunnan
| | - Jiaping Wang
- Department of Radiology, Kunming Medical University & The Second Affiliated Hospital, Kunming, Yunnan
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| |
Collapse
|
3
|
Mousaei Ghasroldasht M, Seok J, Park HS, Liakath Ali FB, Al-Hendy A. Stem Cell Therapy: From Idea to Clinical Practice. Int J Mol Sci 2022; 23:ijms23052850. [PMID: 35269990 PMCID: PMC8911494 DOI: 10.3390/ijms23052850] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerative medicine is a new and promising mode of therapy for patients who have limited or no other options for the treatment of their illness. Due to their pleotropic therapeutic potential through the inhibition of inflammation or apoptosis, cell recruitment, stimulation of angiogenesis, and differentiation, stem cells present a novel and effective approach to several challenging human diseases. In recent years, encouraging findings in preclinical studies have paved the way for many clinical trials using stem cells for the treatment of various diseases. The translation of these new therapeutic products from the laboratory to the market is conducted under highly defined regulations and directives provided by competent regulatory authorities. This review seeks to familiarize the reader with the process of translation from an idea to clinical practice, in the context of stem cell products. We address some required guidelines for clinical trial approval, including regulations and directives presented by the Food and Drug Administration (FDA) of the United States, as well as those of the European Medicine Agency (EMA). Moreover, we review, summarize, and discuss regenerative medicine clinical trial studies registered on the Clinicaltrials.gov website.
Collapse
|
4
|
Zhu J, Liu Y, Chen C, Chen H, Huang J, Luo Y, Zhao K, Chen D, Xu Z, Li W, Zhang X, Xiong Y, Xu L, Wang B. Cyasterone accelerates fracture healing by promoting MSCs migration and osteogenesis. J Orthop Translat 2021; 28:28-38. [PMID: 33717979 PMCID: PMC7905397 DOI: 10.1016/j.jot.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal Stem Cells (MSCs) therapy has become a new coming focus of clinical research in regenerative medicine. However, only a small number of implanted MSCs could successfully reach the injured areas. The previous studies have shown that fracture healing time is inversely proportional to concentration of MSCs in injured tissue. Methods The migration and osteogenesis of MSCs were assessed by transwell assay and Alizarin Red S staining. Levels of gene and protein expression were checked by qPCR and Western Blot. On the other hand, the enhanced migration ability of MSCs induced by Cyasterone was retarded by CXCR4 siRNA. In addition, the rat model of femoral fracture was established to evaluate the effect of Cyasterone on fracture healing. What's more, we also checked the effect of Cyasterone on mobilisation of MSCs in vivo. Results The results showed that Cyasteron increased the number of MSCs in peripheral blood. The concentrations of SDF-1α in serum at different time points were determined by ELISA assay. Micro-CT and histological analysis were used to evaluate the fractured femurs.Our results showed that Cyasterone could promote the migration and osteogenesis capacities of MSCs. The fractured femurs healed faster with treatment of Cyasterone. Meanwhile, Cyasterone could significantly increase the level of SDF-1α in rats with femur fracture. Conclusion Cyasterone could promote migration and osteogenesis of MSCs, and most importantly, it could accelerate bone fracture healing. Translational Potential statement: These findings provide evidence that Cyasterone could be used as a therapeutic reagent for MSCs mobilisation and osteogenesis. What's more, it could acclerate fracture healing.
Collapse
Affiliation(s)
- Junlang Zhu
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510240, PR China
| | - Yamei Liu
- College of Basic Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Innovative Research & Development Lab. of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Chen Chen
- College of Basic Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Innovative Research & Development Lab. of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Hongtai Chen
- Department of Orthopaedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong SAR, 999077, PR China
| | - Jiewen Huang
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510240, PR China
| | - Yiwen Luo
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510240, PR China
| | - Kewei Zhao
- Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510240, PR China
| | - Dongfeng Chen
- College of Basic Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zhiming Xu
- Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, 529000, PR China
| | - Wangyang Li
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Xunchao Zhang
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510240, PR China
| | - Yunpu Xiong
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, 510030, PR China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Bin Wang
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510240, PR China
| |
Collapse
|
5
|
Liu J, Zhou P, Smith J, Xu S, Huang C. A Plastic β-Tricalcium Phosphate/Gelatine Scaffold Seeded with Allogeneic Adipose-Derived Stem Cells for Mending Rabbit Bone Defects. Cell Reprogram 2021; 23:35-46. [PMID: 33400599 DOI: 10.1089/cell.2020.0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the feasibility of β-tricalcium phosphate (TCP)/gelatine scaffold combined with allogeneic adipose-derived stem cells (ASCs) to repair hole shape defect, third-passage ASCs were seeded onto composite scaffolds to prepare an ASC-β-TCP/gelatine tissue-engineered bone to pack into the rabbit cavernous bone defects of experimental groups. In animal models, the bone defect area was completely filled and difficult to recognize in the experimental group at 12 weeks post-surgery by gross observation and radiographic examination. The average bone mineral density value of them was higher than that of the control group. Because of the biocompatibility with allogenic ASCs and the osteoconductivity of β-TCP/gelatine scaffolds, β-TCP/gelatine is suitable as a plastic scaffold for the ASC-seeded tissue-engineered bone to repair cavernous defects.
Collapse
Affiliation(s)
- Jia Liu
- Application Characteristic Discipline of Hunan Province, Changsha Medical University, Changsha, China
| | - Peng Zhou
- Application Characteristic Discipline of Hunan Province, Changsha Medical University, Changsha, China
| | - Jane Smith
- School of Biological Science and Technology, Central South University, Changsha, China
| | - Saiqun Xu
- School of Biological Science and Technology, Central South University, Changsha, China
| | - Chunxia Huang
- Application Characteristic Discipline of Hunan Province, Changsha Medical University, Changsha, China
| |
Collapse
|
6
|
Li H, Wu R, Yu H, Zheng Q, Chen Y. Bioactive Herbal Extracts of Traditional Chinese Medicine Applied with the Biomaterials: For the Current Applications and Advances in the Musculoskeletal System. Front Pharmacol 2021; 12:778041. [PMID: 34776987 PMCID: PMC8581265 DOI: 10.3389/fphar.2021.778041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional Chinese medicine (TCM) has demonstrated superior therapeutic effect for musculoskeletal diseases for thousands of years. Recently, the herbal extracts of TCM have received rapid advances in musculoskeletal tissue engineering (MTE). A literature review collecting both English and Chinese references on bioactive herbal extracts of TCM in biomaterial-based approaches was performed. This review provides an up-to-date overview of application of TCMs in the field of MTE, involving regulation of multiple signaling pathways in osteogenesis, angiogenesis, anti-inflammation, and chondrogenesis. Meanwhile, we highlight the potential advantages of TCM, opening the possibility of its extensive application in MTE. Overall, the superiority of traditional Chinese medicine turns it into an attractive candidate for coupling with advanced additive manufacturing technology.
Collapse
Affiliation(s)
- Haotao Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Haiyang Yu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiujian Zheng, ; Yuanfeng Chen,
| | - Yuanfeng Chen
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Research Department of Medical Science, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiujian Zheng, ; Yuanfeng Chen,
| |
Collapse
|
7
|
Catharmus tinctorius volatile oil promote the migration of mesenchymal stem cells via ROCK2/Myosin light chain signaling. Chin J Nat Med 2020; 17:506-516. [PMID: 31514982 DOI: 10.1016/s1875-5364(19)30072-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 12/24/2022]
Abstract
MSC transplantation has been explored as a new clinical approach to stem cell-based therapies for bone diseases in regenerative medicine due to their osteogenic capability. However, only a small population of implanted MSC could successfully reach the injured areas. Therefore, enhancing MSC migration could be a beneficial strategy to improve the therapeutic potential of cell transplantation. Catharmus tinctorius volatile oil (CTVO) was found to facilitate MSC migration. Further exploration of the underlying molecular mechanism participating in the pro-migratory ability may provide a novel strategy to improve MSC transplantation efficacy. This study indicated that CTVO promotes MSC migration through enhancing ROCK2 mRNA and protein expressions. MSC migration induced by CTVO was blunted by ROCK2 inhibitor, which also decreased myosin light chain (MLC) phosphorylation. Meanwhile, the siRNA for ROCK2 inhibited the effect of CTVO on MSC migration ability and attenuated MLC phosphorylation, suggesting that CTVO may promote BMSC migration via the ROCK2/MLC signaling. Taken together, this study indicates that C. tinctorius volatile oil could enhance MSC migration via ROCK2/MLC signaling in vitro. C. tinctorius volatile oil-targeted therapy could be a beneficial strategy to improve the therapeutic potential of cell transplantation for bone diseases in regenerative medicine.
Collapse
|
8
|
Toosi S, Esmaeilzadeh Z, Naderi‐Meshkin H, Heirani‐Tabasi A, Peivandi MT, Behravan J. Adipocyte lineage differentiation potential of MSCs isolated from reaming material. J Cell Physiol 2019; 234:20066-20071. [DOI: 10.1002/jcp.28605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Zohreh Esmaeilzadeh
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch Mashhad Iran
| | - Hojjat Naderi‐Meshkin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch Mashhad Iran
| | - Asieh Heirani‐Tabasi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch Mashhad Iran
| | - Mohammad Taghi Peivandi
- Department of Orthopedic Surgery, Orthopedic and Trauma Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy University of Waterloo Waterloo Ontario Canada
- Center for Bioengineering and Biotechnology University of Waterloo Waterloo Ontario Canada
| |
Collapse
|
9
|
Cheshomi H, Matin MM. Exosomes and their importance in metastasis, diagnosis, and therapy of colorectal cancer. J Cell Biochem 2019; 120:2671-2686. [PMID: 30246315 DOI: 10.1002/jcb.27582] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/07/2018] [Indexed: 01/24/2023]
Abstract
Extracellular vesicles are known as actual intermediaries of intercellular communications, such as biological signals and cargo transfer between different cells. A variety of cells release the exosomes as nanovesicular bodies. Exosomes contain different compounds such as several types of nucleic acids and proteins. In this study, we focused on exosomes in colorectal cancer as good tools that can be involved in various cancer-related processes. Furthermore, we summarize the advantages and disadvantages of exosome extraction methods and review related studies on the role of exosomes in colorectal cancer. Finally, we focus on reports available on relations between mesenchymal stem cell-derived exosomes and colorectal cancer. Several cancer-related processes such as cancer progression, metastasis, and drug resistance of colorectal cancer are related to the cargoes of exosomes. A variety of molecules, especially proteins, microRNAs, and long noncoding RNAs, play important roles in these processes. The microenvironment features, such as hypoxia, also have very important effects on the properties of the origin cell-derived exosomes. On the other hand, exosomes derived from colorectal cancer cells also interfere with cancer chemoresistance. Furthermore, today it is known that exosomes and their contents can likely be very effective in noninvasive colorectal cancer diagnosis and therapy. Thus, exosomes, and especially their cargoes, play different key roles in various aspects of basic and clinical research related to both progression and therapy of colorectal cancer.
Collapse
Affiliation(s)
- Hamid Cheshomi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Zhou Y, Liao J, Fang C, Mo C, Zhou G, Luo Y. One-step Derivation of Functional Mesenchymal Stem Cells from Human Pluripotent Stem Cells. Bio Protoc 2018; 8:e3080. [PMID: 34532538 DOI: 10.21769/bioprotoc.3080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/02/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are invaluable cell sources for understanding stem cell biology and potential application in tissue engineering and regenerative medicine. The current issues of MSCs that demand to be further addressed are limited donors, tissue sources and limited capacity of ex vivo expansion. Here, we describe a simple and easy protocol for generating functional mesenchymal stem cells from human pluripotent stem cells (hPSCs) via one-step low glucose medium switch strategy in feeder-free culture system. In this protocol, human induced pluripotent stem cells (hiPSCs) and H9 human embryonic stem cells (hESCs) were successfully differentiated into MSCs, named hiPSC-MSCs and hESC-MSCs, respectively. The derived hiPSC-MSCs and hESC-MSCs exhibited common MSC characteristics as MSCs derived from human bone marrow (hBM-MSCs), including expressing MSC surface markers and possessing capability of tri-lineage differentiation in vitro (adipogenesis, osteogenesis and chondrogenesis). As compared with other available protocols, our protocol can be applied to generate a large number of MSCs from hPSCs with high efficiency, low-cost manner, moreover, not involving embryoid body, mouse feeder-cell, flow sorting, and pathway inhibitors (such as SB203580 and SB431542). We believe that this protocol could provide a robust platform to reach the future demand for producing the industrial scale of MSC from hPSCs for autologous cell-based therapy.
Collapse
Affiliation(s)
- Yan Zhou
- Lungene Technologies Co., Ltd, Shenzhen, China
| | - JinQi Liao
- Shenzhen Key Laboratory for Anti-Ageing and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, China
| | | | - CuiPing Mo
- Lungene Technologies Co., Ltd, Shenzhen, China.,Shenzhen Alps Cell Technologies Co., Ltd, Shenzhen, China
| | - GuangQian Zhou
- Shenzhen Key Laboratory for Anti-Ageing and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Lars Bolund institute of Regenerative Medicine, BGI-Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
11
|
Hou J, Luo T, Chen S, Lin S, Yang MM, Li G, Sun D. Calcium Spike Patterns Reveal Linkage of Electrical Stimulus and MSC Osteogenic Differentiation. IEEE Trans Nanobioscience 2018; 18:3-9. [PMID: 30442614 DOI: 10.1109/tnb.2018.2881004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are easily obtained multipotent cells that are widely applied in regenerative medicine. Electrical stimulation (ES) has a promoting effect on bone healing and osteogenic differentiation of MSCs. Direct and alternating currents (AC) are extensively used to promote the osteogenic differentiation of MSCs in vivo and in vitro. However, information on conducting effective differentiation remains scarce. In this paper, we propose a method to optimize ES parameters based on calcium spike patterns of MSCs. Calcium spike frequency decreases as the osteogenic differentiation of MSC progresses. Furthermore, we tested various ES parameters through the real-time monitoring of calcium spike patterns. We efficiently initiated the process of osteogenic differentiation in MSCs by using the optimal parameters of AC, including voltage, signal shapes, frequency, and duty time. This method provides a new approach to optimize osteogenic differentiation and is potentially useful in clinical treatment such as of bone fractures.
Collapse
|
12
|
Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H, Naderi-Meshkin H, Moradi A, Rajabioun M, Alipour F, Ghasemi S, Zare M, Mirahmadi M, Bidkhori HR, Bahrami AR. Application of mesenchymal stem cells to enhance non-union bone fracture healing. J Biomed Mater Res A 2018; 107:301-311. [PMID: 29673055 DOI: 10.1002/jbm.a.36441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 04/12/2018] [Indexed: 01/07/2023]
Abstract
ECM components include a number of osteoinductive and osteoconductive factors, which are involved in bone fracture healing. In this study, a combination of adipose derived mesenchymal stem cells (Ad-MSCs), cancellous bone graft (CBG), and chitosan hydrogel (CHI) was applied to the non-union bone fracture and healing effects were evaluated for the first time. After creation of animal models with non-union fracture in rats, they were randomly classified into seven groups. Radiography at 0, 2, 4, and 8 weeks after surgery, indicated the positive effects of Ad-MSCs + CBG + CHI and Ad-MSCs + CBG in treatment of bone fractures as early as 2 weeks after the surgery. These data were confirmed with both biomechanical and histological studies. Gene expression analyses of Vegf and Bmp2 showed a positive effect of Ad-MSCs on vascularization and osteogenic differentiation in all groups receiving Ad-MSCs, as shown by real-time PCR. Immunofluorescence analysis and RT-PCR results indicated existence of human Ad-MSCs in the fractured region 8 weeks post-surgery. In conclusion, we suggest that application of Ad-MSCs, CBG, and CHI, could be a suitable combination for osteoinduction and osteoconduction to improve non-union bone fracture healing. Further investigations are required to determine the exact mechanisms involved in this process before moving to clinical studies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 301-311, 2019.
Collapse
Affiliation(s)
- Mohammad Mousaei Ghasroldasht
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ali Moradi
- Department of Orthopedic Surgery, Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Rajabioun
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faeze Alipour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Samaneh Ghasemi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zare
- Clinical Pathology, Social Security Organization, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
3D Bone Biomimetic Scaffolds for Basic and Translational Studies with Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19103150. [PMID: 30322134 PMCID: PMC6213614 DOI: 10.3390/ijms19103150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are recognized as an attractive tool owing to their self-renewal and differentiation capacity, and their ability to secrete bioactive molecules and to regulate the behavior of neighboring cells within different tissues. Accumulating evidence demonstrates that cells prefer three-dimensional (3D) to 2D culture conditions, at least because the former are closer to their natural environment. Thus, for in vitro studies and in vivo utilization, great effort is being dedicated to the optimization of MSC 3D culture systems in view of achieving the intended performance. This implies understanding cell–biomaterial interactions and manipulating the physicochemical characteristics of biomimetic scaffolds to elicit a specific cell behavior. In the bone field, biomimetic scaffolds can be used as 3D structures, where MSCs can be seeded, expanded, and then implanted in vivo for bone repair or bioactive molecules release. Actually, the union of MSCs and biomaterial has been greatly improving the field of tissue regeneration. Here, we will provide some examples of recent advances in basic as well as translational research about MSC-seeded scaffold systems. Overall, the proliferation of tools for a range of applications witnesses a fruitful collaboration among different branches of the scientific community.
Collapse
|
14
|
Zhou K, Feng B, Wang W, Jiang Y, Zhang W, Zhou G, Jiang T, Cao Y, Liu W. Nanoscaled and microscaled parallel topography promotes tenogenic differentiation of ASC and neotendon formation in vitro. Int J Nanomedicine 2018; 13:3867-3881. [PMID: 30013341 PMCID: PMC6038871 DOI: 10.2147/ijn.s161423] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Topography at different scales plays an important role in directing mesenchymal stem cell differentiation including adipose-derived stem cells (ASCs) and the differential effect remains to be investigated. Purpose This study aimed to investigate the similarity and difference between micro- and nanoscaled aligned topography for inducing tenogenic differentiation of human ASCs (hASCs). Methods Parallel microgrooved PDMS membrane and a parallel aligned electrospun nanofibers of gelatin/poly-ε-caprolactone mixture were employed as the models for the study. Results Aligned topographies of both microscales and nanoscales could induce an elongated cell shape with parallel alignment, as supported by quantitative cell morphology analysis (cell area, cell body aspect, and cell body major axis angle). qPCR analysis also demonstrated that the aligned topography at both scales could induce the gene expressions of various tenogenic markers at the 7th day of in vitro culture including tenomodulin, collagen I and collagen VI, decorin, tenascin-C and biglycan, but with upregulated expression of scleraxis and tenascin-C only in microscaled topography. Additionally, tenogenic differentiation at the 3rd day was confirmed only at microscale. Furthermore, microscaled topography was confirmed for its tenogenic induction at tissue level as neotendon tissue was formed with the evidence of mature type I collagen fibers only in parallel aligned polyglycolic acid (PGA) microfibers after in vitro culture with mouse ASCs. Instead, only fat tissue was formed in random patterned PGA microfibers. Conclusion Both microscaled and nanoscaled aligned topographies could induce tenogenic differentiation of hASCs and micro-scaled topography seemed better able to induce elongated cell shape and stable tenogenic marker expression when compared to nanoscaled topography. The microscaled inductive effect was also confirmed at tissue level by neotendon formation in vitro.
Collapse
Affiliation(s)
- Kaili Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Bei Feng
- Shanghai Children's Medical Center, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Ting Jiang
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| |
Collapse
|
15
|
Zhuo C, Zheng D, He Z, Jin J, Ren Z, Jin F, Wang Y. HSV-1 enhances the energy metabolism of human umbilical cord mesenchymal stem cells to promote virus infection. Future Virol 2017. [DOI: 10.2217/fvl-2017-0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To explore the underlying influence of HSV type-1 (HSV-1) infection on the energy metabolism of human umbilical cord-derived mesenchymal stem cells (UCMSCs). Methods: UCMSCs (derived from different donors) were isolated from umbilical cord tissue, cultured and infected with HSV-1. Various virology and biochemical assays were used to assess cell viability and function, such as plaque formation assay and mitochondrial mass assay. Results: HSV-1 infection sharply activated mitochondrial biogenesis, increased glucose consumption, oxidative phosphorylation and glycolysis of UCMSCs. Treatment with rotenone (a metabolism antagonist) and iodoacetic acid significantly blocked the proliferation of HSV-1 in UCMSCs. Conclusion: This study demonstrates, for the first time, that HSV-1 infection affects the energy metabolism process of UCMSCs. Treatment with the appropriate metabolism antagonists might improve the safety and efficacy of clinical stem cell therapies.
Collapse
Affiliation(s)
- Cuiqin Zhuo
- Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| | - Danlin Zheng
- Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| | - Zhe He
- Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| | - Ju Jin
- Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| | - Fujun Jin
- Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
16
|
Tsao YT, Huang YJ, Wu HH, Liu YA, Liu YS, Lee OK. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells. Int J Mol Sci 2017; 18:ijms18010159. [PMID: 28106724 PMCID: PMC5297792 DOI: 10.3390/ijms18010159] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/27/2023] Open
Abstract
There is a growing interest in cell therapies using mesenchymal stromal cells (MSCs) for repairing bone defects. MSCs have the ability to differentiate into osteoprogenitors and osteoblasts as well as to form calcified bone matrix. However, the molecular mechanisms governing mineralization during osteogenic differentiation remain unclear. Non-collagenous proteins in the extracellular matrix are believed to control different aspects of the mineralization. Since osteocalcin is the most abundant non-collagenous bone matrix protein, the purpose of this study is to investigate the roles of osteocalcin in mineral species production during osteogenesis of MSCs. Using Raman spectroscopy, we found that the maturation of mineral species was affected by osteocalcin expression level. After osteocalcin was knocked down, the mineral species maturation was delayed and total hydroxyapatite was lower than the control group. In addition, the expression of osteogenic marker genes, including RUNX2, alkaline phosphatase, type I collagen, and osteonectin, was downregulated during osteogenic differentiation compared to the control group; whereas gene expression of osterix was upregulated after the knockdown. Together, osteocalcin plays an essential role for the maturation of mineral species and modulates osteogenic differentiation of MSCs. The results offer new insights into the enhancement of new bone formation, such as for the treatments of osteoporosis and fracture healing.
Collapse
Affiliation(s)
- Yu-Tzu Tsao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Division of Nephrology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan.
| | - Yi-Jeng Huang
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Hao-Hsiang Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yu-An Liu
- Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yi-Shiuan Liu
- Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Oscar K Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
- Taipei City Hospital, Taipei 10341, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| |
Collapse
|