1
|
Sreedasyam R, Wilson BG, Ferrandez PR, Botvinick EL, Venugopalan V. An optical system for cellular mechanostimulation in 3D hydrogels. Acta Biomater 2024; 189:439-448. [PMID: 39368720 DOI: 10.1016/j.actbio.2024.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
We introduce a method utilizing single laser-generated cavitation bubbles to stimulate cellular mechanotransduction in dermal fibroblasts embedded within 3D hydrogels. We demonstrate that fibroblasts embedded in either amorphous or fibrillar hydrogels engage in Ca2+ signaling following exposure to an impulsive mechanical stimulus provided by a single 250 µm diameter laser-generated cavitation bubble. We find that the spatial extent of the cellular signaling is larger for cells embedded within a fibrous collagen hydrogel as compared to those embedded within an amorphous polyvinyl alcohol polymer (SLO-PVA) hydrogel. Additionally, for fibroblasts embedded in collagen, we find an increased range of cellular mechanosensitivity for cells that are polarized relative to the radial axis as compared to the circumferential axis. By contrast, fibroblasts embedded within SLO-PVA did not display orientation-dependent mechanosensitivity. Fibroblasts embedded in hydrogels and cultured in calcium-free media did not show cavitation-induced mechanotransduction; implicating calcium signaling based on transmembrane Ca2+ transport. This study demonstrates the utility of single laser-generated cavitation bubbles to provide local non-invasive impulsive mechanical stimuli within 3D hydrogel tissue models with concurrent imaging using optical microscopy. STATEMENT OF SIGNIFICANCE: Currently, there are limited methods for the non-invasive real-time assessment of cellular sensitivity to mechanical stimuli within 3D tissue scaffolds. We describe an original approach that utilizes a pulsed laser microbeam within a standard laser scanning microscope system to generate single cavitation bubbles to provide impulsive mechanostimulation to cells within 3D fibrillar and amorphous hydrogels. Using this technique, we measure the cellular mechanosensitivity of primary human dermal fibroblasts embedded in amorphous and fibrillar hydrogels, thereby providing a useful method to examine cellular mechanotransduction in 3D biomaterials. Moreover, the implementation of our method within a standard optical microscope makes it suitable for broad adoption by cellular mechanotransduction researchers and opens the possibility of high-throughput evaluation of biomaterials with respect to cellular mechanosignaling.
Collapse
Affiliation(s)
- Rahul Sreedasyam
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States
| | - Bryce G Wilson
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697-2580, United States
| | - Patricia R Ferrandez
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States; Beckman Laser Institute, University of California Irvine, Irvine, CA 92697-3010, United States.
| | - Vasan Venugopalan
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States; Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697-2580, United States; Beckman Laser Institute, University of California Irvine, Irvine, CA 92697-3010, United States.
| |
Collapse
|
2
|
Pucha SA, Hasson M, Solomon H, McColgan GE, Robinson JL, Vega SL, Patel JM. Revealing Early Spatial Patterns of Cellular Responsivity in Fiber-Reinforced Microenvironments. Tissue Eng Part A 2024; 30:614-626. [PMID: 38517095 DOI: 10.1089/ten.tea.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Fiber-reinforcement approaches have been used to replace aligned tissues with engineered constructs after injury or surgical resection, strengthening soft biomaterial scaffolds and replicating anisotropic, load-bearing properties. However, most studies focus on the macroscale aspects of these scaffolds, rarely considering the cell-biomaterial interactions that govern remodeling and extracellular matrix organization toward aligned neo-tissues. As initial cell-biomaterial responses within fiber-reinforced microenvironments likely influence the long-term efficacy of repair and regeneration strategies, here we elucidate the roles of spatial orientation, substrate stiffness, and matrix remodeling on early cell-fiber interactions. Bovine mesenchymal stromal cells (MSCs) were cultured in soft fibrin gels reinforced with a stiff 100 µm polyglycolide-co-caprolactone fiber. Gel stiffness and remodeling capacity were modulated by fibrinogen concentration and aprotinin treatment, respectively. MSCs were imaged at 3 days and evaluated for morphology, mechanoresponsiveness (nuclear Yes-associated protein [YAP] localization), and spatial features including distance and angle deviation from fiber. Within these constructs, morphological conformity decreased as a function of distance from fiber. However, these correlations were weak (R2 = 0.01043 for conformity and R2 = 0.05542 for nuclear YAP localization), illustrating cellular heterogeneity within fiber-enforced microenvironments. To better assess cell-fiber interactions, we applied machine-learning strategies to our heterogeneous dataset of cell-shape and mechanoresponsive parameters. Principal component analysis (PCA) was used to project 23 input parameters (not including distance) onto 5 principal components (PCs), followed by agglomerative hierarchical clustering to classify cells into 3 groups. These clusters exhibited distinct levels of morpho-mechanoresponse (combination of morphological conformity and YAP signaling) and were classified as high response (HR), medium response (MR), and low response (LR) clusters. Cluster distribution varied spatially, with most cells (61%) closest to the fiber (0-75 µm) belonging to the HR cluster, and most cells (55%) furthest from the fiber (225-300 µm) belonging to the LR cluster. Modulation of gel stiffness and fibrin remodeling showed differential effects for HR cells, with stiffness influencing the level of mechanoresponse and remodeling capacity influencing the location of responding cells. Together, these novel findings demonstrate early trends in cellular patterning of the fiber-reinforced microenvironment, showing how spatial orientation, substrate biophysical properties, and matrix remodeling may guide the amplitude and localization of cellular mechanoresponses. These trends may guide approaches to optimize the design of microscale scaffold architecture and substrate properties for enhancing organized tissue assembly at the macroscale.
Collapse
Affiliation(s)
- Saitheja A Pucha
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Maddie Hasson
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Hanna Solomon
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Gail E McColgan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Jennifer L Robinson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, USA
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
- Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Jay M Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
3
|
Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, Ahmadi M, Włodarczyk-Biegun MK, Ghavami S, Likus W, Siemianowicz K, Łos MJ. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int J Mol Sci 2022; 23:ijms232416185. [PMID: 36555829 PMCID: PMC9785373 DOI: 10.3390/ijms232416185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Biomaterials for tissue scaffolds are key components in modern tissue engineering and regenerative medicine. Targeted reconstructive therapies require a proper choice of biomaterial and an adequate choice of cells to be seeded on it. The introduction of stem cells, and the transdifferentiation procedures, into regenerative medicine opened a new era and created new challenges for modern biomaterials. They must not only fulfill the mechanical functions of a scaffold for implanted cells and represent the expected mechanical strength of the artificial tissue, but furthermore, they should also assure their survival and, if possible, affect their desired way of differentiation. This paper aims to review how modern biomaterials, including synthetic (i.e., polylactic acid, polyurethane, polyvinyl alcohol, polyethylene terephthalate, ceramics) and natural (i.e., silk fibroin, decellularized scaffolds), both non-biodegradable and biodegradable, could influence (tissue) stem cells fate, regulate and direct their differentiation into desired target somatic cells.
Collapse
Affiliation(s)
- Rency Geevarghese
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyedeh Sara Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Andrzej Hudecki
- Łukasiewicz Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland
| | - Samad Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | | | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Małgorzata K. Włodarczyk-Biegun
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| |
Collapse
|
4
|
Liu Y, Shen S, Wu Y, Wang M, Cheng Y, Xia H, Jia R, Liu C, Wang Y, Xia Y, Cheng X, Yue Y, Xie Z. Percutaneous Electroosmosis of Berberine-Loaded Ca 2+ Crosslinked Gelatin/Alginate Mixed Hydrogel. Polymers (Basel) 2022; 14:polym14235101. [PMID: 36501495 PMCID: PMC9737946 DOI: 10.3390/polym14235101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Flexible conductive hydrogel has been driven by scientific breakthroughs and offers a wide variety of applications, including sensors, electronic skins, biomedicine, energy storage, etc. Based on the mixed-ion crosslinking method, gelatin and sodium alginate (Gel-Alg) composite hydrogels were successfully prepared using Ca2+ crosslinking. The migration behavior of berberine hydrochloride (BBH) in the matrix network structure of Gel-Alg hydrogel with a certain pore size under an electric field was studied, and the transdermal effect of berberine hydrochloride under an electric field was also studied. The experimental results show that Gel-Alg has good flexibility and conductivity, and electrical stimulation can enhance the transdermal effect of drugs. Gel-Alg composite hydrogel may be a new material with potential application value in future biomedical directions.
Collapse
Affiliation(s)
- Yinyin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Mengmeng Wang
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, China
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| |
Collapse
|
5
|
Dabiri SMH, Samiei E, Shojaei S, Karperien L, Khun Jush B, Walsh T, Jahanshahi M, Hassanpour S, Hamdi D, Seyfoori A, Ahadian S, Khademhosseini A, Akbari M. Multifunctional Thermoresponsive Microcarriers for High-Throughput Cell Culture and Enzyme-Free Cell Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103192. [PMID: 34558181 DOI: 10.1002/smll.202103192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
An effective treatment of human diseases using regenerative medicine and cell therapy approaches requires a large number of cells. Cultivation of cells on microcarriers is a promising approach due to the high surface-to-volume ratios that these microcarriers offer. Here, multifunctional temperature-responsive microcarriers (cytoGel) made of an interpenetrating hydrogel network composed of poly(N-isopropylacrylamide) (PNIPAM), poly(ethylene glycol) diacrylate (PEGDA), and gelatin methacryloyl (GelMA) are developed. A flow-focusing microfluidic chip is used to produce microcarriers with diameters in the range of 100-300 μm and uniform size distribution (polydispersity index of ≈0.08). The mechanical properties and cells adhesion properties of cytoGel are adjusted by changing the composition hydrogel composition. Notably, GelMA regulates the temperature response and enhances microcarrier stiffness. Human-derived glioma cells (U87) are grown on cytoGel in static and dynamic culture conditions with cell viabilities greater than 90%. Enzyme-free cell detachment is achieved at room temperature with up to 70% detachment efficiency. Controlled release of bioactive molecules from cytoGel is accomplished for over a week to showcase the potential use of microcarriers for localized delivery of growth factors to cell surfaces. These microcarriers hold great promise for the efficient expansion of cells for the industrial-scale culture of therapeutic cells.
Collapse
Affiliation(s)
- Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Shahla Shojaei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Lucas Karperien
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Bardia Khun Jush
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Maryam Jahanshahi
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Sadegh Hassanpour
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - David Hamdi
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
| |
Collapse
|
6
|
Ashworth JC, Thompson JL, James JR, Slater CE, Pijuan-Galitó S, Lis-Slimak K, Holley RJ, Meade KA, Thompson A, Arkill KP, Tassieri M, Wright AJ, Farnie G, Merry CLR. Peptide gels of fully-defined composition and mechanics for probing cell-cell and cell-matrix interactions in vitro. Matrix Biol 2020; 85-86:15-33. [PMID: 31295578 PMCID: PMC7610915 DOI: 10.1016/j.matbio.2019.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 01/14/2023]
Abstract
Current materials used for in vitro 3D cell culture are often limited by their poor similarity to human tissue, batch-to-batch variability and complexity of composition and manufacture. Here, we present a "blank slate" culture environment based on a self-assembling peptide gel free from matrix motifs. The gel can be customised by incorporating matrix components selected to match the target tissue, with independent control of mechanical properties. Therefore the matrix components are restricted to those specifically added, or those synthesised by encapsulated cells. The flexible 3D culture platform provides full control over biochemical and physical properties, allowing the impact of biochemical composition and tissue mechanics to be separately evaluated in vitro. Here, we demonstrate that the peptide gels support the growth of a range of cells including human induced pluripotent stem cells and human cancer cell lines. Furthermore, we present proof-of-concept that the peptide gels can be used to build disease-relevant models. Controlling the peptide gelator concentration allows peptide gel stiffness to be matched to normal breast (<1 kPa) or breast tumour tissue (>1 kPa), with higher stiffness favouring the viability of breast cancer cells over normal breast cells. In parallel, the peptide gels may be modified with matrix components relevant to human breast, such as collagen I and hyaluronan. The choice and concentration of these additions affect the size, shape and organisation of breast epithelial cell structures formed in co-culture with fibroblasts. This system therefore provides a means of unravelling the individual influences of matrix, mechanical properties and cell-cell interactions in cancer and other diseases.
Collapse
Affiliation(s)
- J C Ashworth
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK; Manchester Cancer Research Centre, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK.
| | - J L Thompson
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - J R James
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - C E Slater
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - S Pijuan-Galitó
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK; Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, UK
| | - K Lis-Slimak
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - R J Holley
- Stem Cell and Neurotherapies Group, University of Manchester, UK
| | - K A Meade
- Office of Business Relations, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - A Thompson
- Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - K P Arkill
- Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - M Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, UK
| | - A J Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, UK
| | - G Farnie
- Manchester Cancer Research Centre, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK; SGC, Botnar Research Centre, NDORMS, University of Oxford, UK.
| | - C L R Merry
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK.
| |
Collapse
|
7
|
Wagner K, Girardo S, Goswami R, Rosso G, Ulbricht E, Müller P, Soteriou D, Träber N, Guck J. Colloidal crystals of compliant microgel beads to study cell migration and mechanosensitivity in 3D. SOFT MATTER 2019; 15:9776-9787. [PMID: 31742293 DOI: 10.1039/c9sm01226e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tissues are defined not only by their biochemical composition, but also by their distinct mechanical properties. It is now widely accepted that cells sense their mechanical environment and respond to it. However, studying the effects of mechanics in in vitro 3D environments is challenging since current 3D hydrogel assays convolve mechanics with gel porosity and adhesion. Here, we present novel colloidal crystals as modular 3D scaffolds where these parameters are principally decoupled by using monodisperse, protein-coated PAAm microgel beads as building blocks, so that variable stiffness regions can be achieved within one 3D colloidal crystal. Characterization of the colloidal crystal and oxygen diffusion simulations suggested the suitability of the scaffold to support cell survival and growth. This was confirmed by live-cell imaging and fibroblast culture over a period of four days. Moreover, we demonstrate unambiguous durotactic fibroblast migration and mechanosensitive neurite outgrowth of dorsal root ganglion neurons in 3D. This modular approach of assembling 3D scaffolds from mechanically and biochemically well-defined building blocks allows the spatial patterning of stiffness decoupled from porosity and adhesion sites in principle and provides a platform to investigate mechanosensitivity in 3D environments approximating tissues in vitro.
Collapse
Affiliation(s)
- Katrin Wagner
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Characterization of 3D matrix conditions for cancer cell migration with elasticity/porosity-independent tunable microfiber gels. Polym J 2019. [DOI: 10.1038/s41428-019-0283-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Scott KE, Rychel K, Ranamukhaarachchi S, Rangamani P, Fraley SI. Emerging themes and unifying concepts underlying cell behavior regulation by the pericellular space. Acta Biomater 2019; 96:81-98. [PMID: 31176842 DOI: 10.1016/j.actbio.2019.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022]
Abstract
Cells reside in a complex three-dimensional (3D) microenvironment where physical, chemical, and architectural features of the pericellular space regulate important cellular functions like migration, differentiation, and morphogenesis. A major goal of tissue engineering is to identify which properties of the pericellular space orchestrate these emergent cell behaviors and how. In this review, we highlight recent studies at the interface of biomaterials and single cell biophysics that are lending deeper insight towards this goal. Advanced methods have enabled the decoupling of architectural and mechanical features of the microenvironment, revealing multiple mechanisms of adhesion and mechanosensing modulation by biomaterials. Such studies are revealing important roles for pericellular space degradability, hydration, and adhesion competition in cell shape, volume, and differentiation regulation. STATEMENT OF SIGNIFICANCE: Cell fate and function are closely regulated by the local extracellular microenvironment. Advanced methods at the interface of single cell biophysics and biomaterials have shed new light on regulators of cell-pericellular space interactions by decoupling more features of the complex pericellular milieu than ever before. These findings lend deeper mechanistic insight into how biomaterials can be designed to fine-tune outcomes like differentiation, migration, and collective morphogenesis.
Collapse
Affiliation(s)
- Kiersten E Scott
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Kevin Rychel
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Sural Ranamukhaarachchi
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Padmini Rangamani
- Mechanical and Aerospace Engineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0411, La Jolla, CA 92093, USA.
| | - Stephanie I Fraley
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Shiki A, Inoh Y, Yokawa S, Furuno T. Inhibition of degranulation in mast cells attached to a hydrogel through defective microtubule tracts. Exp Cell Res 2019; 381:248-255. [PMID: 31112735 DOI: 10.1016/j.yexcr.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
Abstract
Mast cells (MCs) are important effectors of the immediate allergic response. MCs are distributed throughout various tissues and organs, and adhere to extracellular matrix (ECM) with broad stiffness in the body. Here we compared cellular responses following antigen stimulation in MCs on glass-base dishes with and without a hydrogel. We found that an antigen-induced increase in intracellular Ca2+ concentration was suppressed slightly in cells on hydrogel-coated dishes compared with those on non-coated dishes, whereas their subsequent degranulation was largely inhibited in cells adherent to the hydrogel. Focusing on focal adhesions (FAs), vinculin was distributed in a dot-like manner at the bottom of resting cells on non-coated dishes but not on hydrogel-coated dishes. According to antigen stimulation, phosphorylation of focal adhesion kinase and additive vinculin accumulation to FAs were promoted in cells on non-coated dishes, but were diminished on hydrogel-coated dishes. Moreover, microtubule reorganization and acetylation (which have important roles in MC degranulation) were also suppressed in activated MCs adherent to the hydrogel. These findings suggest that adhesion to a hydrogel led to failure of composition of functional FAs and microtubule tracts, which resulted in suppression of MC degranulation following antigen stimulation.
Collapse
Affiliation(s)
- Atsushi Shiki
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan.
| |
Collapse
|
11
|
Zhao H, Xu K, Zhu P, Wang C, Chi Q. Smart hydrogels with high tunability of stiffness as a biomimetic cell carrier. Cell Biol Int 2019; 43:84-97. [DOI: 10.1002/cbin.11091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/23/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Han Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Kang Xu
- Department of Cardiovascular Surgery; Union Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Peng Zhu
- Department of Cardiovascular Surgery; Union Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Chunli Wang
- “111 ” Project Laboratory of Biomechanics and Tissue Repair; Bioengineering College; Chongqing University; Chongqing China
| | - Qingjia Chi
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics; Department of Mechanics and Engineering Structure; Wuhan University of Technology; Wuhan China
| |
Collapse
|
12
|
Mora-Boza A, Puertas-Bartolomé M, Vázquez-Lasa B, San Román J, Pérez-Caballer A, Olmeda-Lozano M. Contribution of bioactive hyaluronic acid and gelatin to regenerative medicine. Methodologies of gels preparation and advanced applications. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Xiao L, Liu S, Yao D, Ding Z, Fan Z, Lu Q, Kaplan DL. Fabrication of Silk Scaffolds with Nanomicroscaled Structures and Tunable Stiffness. Biomacromolecules 2017; 18:2073-2079. [DOI: 10.1021/acs.biomac.7b00406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shanshan Liu
- School
of Medicine, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Danyu Yao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhihai Fan
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People’s Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
14
|
Watson PMD, Kavanagh E, Allenby G, Vassey M. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation. SLAS DISCOVERY 2017; 22:583-601. [PMID: 28346104 DOI: 10.1177/2472555217691450] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurodegeneration and neuroinflammation are key features in a range of chronic central nervous system (CNS) diseases such as Alzheimer's and Parkinson's disease, as well as acute conditions like stroke and traumatic brain injury, for which there remains significant unmet clinical need. It is now well recognized that current cell culture methodologies are limited in their ability to recapitulate the cellular environment that is present in vivo, and there is a growing body of evidence to show that three-dimensional (3D) culture systems represent a more physiologically accurate model than traditional two-dimensional (2D) cultures. Given the complexity of the environment from which cells originate, and their various cell-cell and cell-matrix interactions, it is important to develop models that can be controlled and reproducible for drug discovery. 3D cell models have now been developed for almost all CNS cell types, including neurons, astrocytes, microglia, and oligodendrocyte cells. This review will highlight a number of current and emerging techniques for the culture of astrocytes and microglia, glial cell types with a critical role in neurodegenerative and neuroinflammatory conditions. We describe recent advances in glial cell culture using electrospun polymers and hydrogel macromolecules, and highlight how these novel culture environments influence astrocyte and microglial phenotypes in vitro, as compared to traditional 2D systems. These models will be explored to illuminate current trends in the techniques used to create 3D environments for application in research and drug discovery focused on astrocytes and microglial cells.
Collapse
|