1
|
Bhattacharya A, Alam K, Roy NS, Kaur K, Kaity S, Ravichandiran V, Roy S. Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer. J Exp Clin Cancer Res 2023; 42:343. [PMID: 38102637 PMCID: PMC10724947 DOI: 10.1186/s13046-023-02926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
In vitro models are necessary to study the pathophysiology of the disease and the development of effective, tailored treatment methods owing to the complexity and heterogeneity of breast cancer and the large population affected by it. The cellular connections and tumor microenvironments observed in vivo are often not recapitulated in conventional two-dimensional (2D) cell cultures. Therefore, developing 3D in vitro models that mimic the complex architecture and physiological circumstances of breast tumors is crucial for advancing our understanding of the illness. A 3D scaffold-free in vitro disease model mimics breast cancer pathophysiology by allowing cells to self-assemble/pattern into 3D structures, in contrast with other 3D models that rely on artificial scaffolds. It is possible that this model, whether applied to breast tumors using patient-derived primary cells (fibroblasts, endothelial cells, and cancer cells), can accurately replicate the observed heterogeneity. The complicated interactions between different cell types are modelled by integrating critical components of the tumor microenvironment, such as the extracellular matrix, vascular endothelial cells, and tumor growth factors. Tissue interactions, immune cell infiltration, and the effects of the milieu on drug resistance can be studied using this scaffold-free 3D model. The scaffold-free 3D in vitro disease model for mimicking tumor pathophysiology in breast cancer is a useful tool for studying the molecular basis of the disease, identifying new therapeutic targets, and evaluating treatment modalities. It provides a more physiologically appropriate high-throughput platform for screening large compound library in a 96-384 well format. We critically discussed the rapid development of personalized treatment strategies and accelerated drug screening platforms to close the gap between traditional 2D cell culture and in vivo investigations.
Collapse
Affiliation(s)
- Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
2
|
Wei H, Li Y, Li L, Hu Q, Shi M, Cheng L, Jiang X, Zhou Y, Chen S, Ji Y, Chen L. Novel organoid construction strategy for non-involuting congenital hemangioma for drug validation. J Biol Eng 2023; 17:32. [PMID: 37106420 PMCID: PMC10142414 DOI: 10.1186/s13036-023-00348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Non-involuting congenital hemangiomas (NICHs) are fully formed vascular tumors at birth with distinctive clinical, radiologic, and histopathological profiles. In the literature, there is no effective therapy strategy for patients with NICH except surgery. Currently, no cell line or animal model exists for studying the mechanism of NICH and drug validation. We plan to construct a new strategy by constructing NICH organoids for further study. RESULT Here, we report a novel NICH organoid system construction and optimization process. Both HE and immunohistological staining exactly matched NICH tissue. We further performed transcriptome analysis to elucidate the characteristics of NICH organoids. Both NICH tissue and NICH organoids manifested similar trends in download sites. NICH organoids display novel features to new cells derived from organoids and show spectacular multiplication capacity. In the preliminary verification, we found that cells splitting from NICH organoids were human endothelial cells. Drug validation demonstrated that trametinib, sirolimus, and propranolol showed no inhibitory effects on NICH organoids. CONCLUSION Our data show that this new NICH-derived organoid faithfully captured the features of this rare vascular tumor. Our study will boost further research on the mechanism of NICH and drug filtering in the future.
Collapse
Affiliation(s)
- Haoche Wei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yanan Li
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Li Li
- Institute of Clinical Pathology West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Qian Hu
- Department of Hematology, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linbo Cheng
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xile Jiang
- Clinical Nutrition Department, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yanting Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
A review of the influence of mammographic density on breast cancer clinical and pathological phenotype. Breast Cancer Res Treat 2019; 177:251-276. [PMID: 31177342 DOI: 10.1007/s10549-019-05300-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE It is well established that high mammographic density (MD), when adjusted for age and body mass index, is one of the strongest known risk factors for breast cancer (BC), and also associates with higher incidence of interval cancers in screening due to the masking of early mammographic abnormalities. Increasing research is being undertaken to determine the underlying histological and biochemical determinants of MD and their consequences for BC pathogenesis, anticipating that improved mechanistic insights may lead to novel preventative or treatment interventions. At the same time, technological advances in digital and contrast mammography are such that the validity of well-established relationships needs to be re-examined in this context. METHODS With attention to old versus new technologies, we conducted a literature review to summarise the relationships between clinicopathologic features of BC and the density of the surrounding breast tissue on mammography, including the associations with BC biological features inclusive of subtype, and implications for the clinical disease course encompassing relapse, progression, treatment response and survival. RESULTS AND CONCLUSIONS There is reasonable evidence to support positive relationships between high MD (HMD) and tumour size, lymph node positivity and local relapse in the absence of radiotherapy, but not between HMD and LVI, regional relapse or distant metastasis. Conflicting data exist for associations of HMD with tumour location, grade, intrinsic subtype, receptor status, second primary incidence and survival, which need further confirmatory studies. We did not identify any relationships that did not hold up when data involving newer imaging techniques were employed in analysis.
Collapse
|
4
|
Huo CW, Waltham M, Khoo C, Fox SB, Hill P, Chen S, Chew GL, Price JT, Nguyen CH, Williams ED, Henderson M, Thompson EW, Britt KL. Mammographically dense human breast tissue stimulates MCF10DCIS.com progression to invasive lesions and metastasis. Breast Cancer Res 2016; 18:106. [PMID: 27776557 PMCID: PMC5078949 DOI: 10.1186/s13058-016-0767-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Background High mammographic density (HMD) not only confers a significantly increased risk of breast cancer (BC) but also is associated with BCs of more advanced stages. However, it is unclear whether BC progression and metastasis are stimulated by HMD. We investigated whether patient-derived HMD breast tissue could stimulate the progression of MCF10DCIS.com cells compared with patient-matched low mammographic density (LMD) tissue. Methods Sterile breast specimens were obtained immediately after prophylactic mastectomy from high-risk women (n = 10). HMD and LMD regions of each specimen were resected under radiological guidance. Human MCF10DCIS.com cells, a model of ductal carcinoma in situ (DCIS), were implanted into silicone biochambers in the groins of severe combined immunodeficiency mice, either alone or with matched LMD or HMD tissue (1:1), and maintained for 6 weeks. We assessed biochamber weight as a measure of primary tumour growth, histological grade of the biochamber material, circulating tumour cells and metastatic burden by luciferase and histology. All statistical tests were two-sided. Results HMD breast tissue led to increased primary tumour take, increased biochamber weight and increased proportions of high-grade DCIS and grade 3 invasive BCs compared with LMD. This correlated with an increased metastatic burden in the mice co-implanted with HMD tissue. Conclusions Our study is the first to explore the direct effect of HMD and LMD human breast tissue on the progression and dissemination of BC cells in vivo. The results suggest that HMD status should be a consideration in decision-making for management of patients with DCIS lesions. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0767-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilia W Huo
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, 3156, Australia
| | - Mark Waltham
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, 3156, Australia.,St Vincent's Institute of Medical Research, Melbourne, VIC, 3156, Australia
| | - Christine Khoo
- Department of Pathology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,Department of Pathology, University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia
| | - Prue Hill
- Department of Pathology, St Vincent's Hospital, Melbourne, VIC, 3156, Australia
| | - Shou Chen
- Department of Pathology, St Vincent's Hospital, Melbourne, VIC, 3156, Australia
| | - Grace L Chew
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, 3156, Australia.,Austin Health and Northern Health, Melbourne, VIC, 3084, Australia
| | - John T Price
- College of Health and Biomedicine, Victoria University, St Albans, VIC, 8001, Australia.,Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, University of Melbourne and Western Health, Sunshine Hospital, St Albans, VIC, 3021, Australia
| | - Chau H Nguyen
- College of Health and Biomedicine, Victoria University, St Albans, VIC, 8001, Australia
| | - Elizabeth D Williams
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4001, Australia.,Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.,Australian Prostate Cancer Centre - Queensland, Brisbane, QLD, 4102, Australia
| | - Michael Henderson
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, 3156, Australia.,Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3002, Australia
| | - Erik W Thompson
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, 3156, Australia. .,St Vincent's Institute of Medical Research, Melbourne, VIC, 3156, Australia. .,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4001, Australia. .,Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Kara L Britt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.,Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| |
Collapse
|