1
|
Cao X, Cui H, Ji X, Li B, Lu R, Zhang Y, Chen J. Determining the Potential Roles of Branched-Chain Amino Acids in the Regulation of Muscle Growth in Common Carp ( Cyprinus carpio) Based on Transcriptome and MicroRNA Sequencing. AQUACULTURE NUTRITION 2023; 2023:7965735. [PMID: 37303609 PMCID: PMC10257547 DOI: 10.1155/2023/7965735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Branched-chain amino acids (BCAAs) can be critically involved in skeletal muscle growth and body energy homeostasis. Skeletal muscle growth is a complex process; some muscle-specific microRNAs (miRNAs) are involved in the regulation of muscle thickening and muscle mass. Additionally, the regulatory network between miRNA and messenger RNA (mRNA) in the modulation of the role of BCAAs on skeletal muscle growth in fish has not been studied. In this study, common carp was starved for 14 days, followed by a 14-day gavage therapy with BCAAs, to investigate some of the miRNAs and genes that contribute to the regulation of normal growth and maintenance of skeletal muscle in response to short-term BCAA starvation stress. Subsequently, the transcriptome and small RNAome sequencing of carp skeletal muscle were performed. A total of 43,414 known and 1,112 novel genes were identified, in addition to 142 known and 654 novel miRNAs targeting 22,008 and 33,824 targets, respectively. Based on their expression profiles, 2,146 differentially expressed genes (DEGs) and 84 differentially expressed miRNA (DEMs) were evaluated. Kyoto Encyclopedia of Genes and Genome pathways, including the proteasome, phagosome, autophagy in animals, proteasome activator complex, and ubiquitin-dependent protein catabolic process, were enriched for these DEGs and DEMs. Our findings revealed the role of atg5, map1lc3c, ctsl, cdc53, psma6, psme2, myl9, and mylk in skeletal muscle growth, protein synthesis, and catabolic metabolism. Furthermore, miR-135c, miR-192, miR-194, and miR-203a may play key roles in maintaining the normal activities of the organism by regulating genes related to muscle growth, protein synthesis, and catabolism. This study on transcriptome and miRNA reveals the potential molecular mechanisms underlying the regulation of muscle protein deposition and provides new insights into genetic engineering techniques to improve common carp muscle development.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Ji
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Baohua Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Nie H, Wang F, Zeng X, Bao H, Liu X. Analysis of Communal Molecular Mechanism Between Chronic Obstructive Pulmonary Disease and Osteoporosis. Int J Chron Obstruct Pulmon Dis 2023; 18:259-271. [PMID: 36937804 PMCID: PMC10017835 DOI: 10.2147/copd.s395492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) patients with osteoporosis (OP) usually experience more frequent exacerbations, worse quality of life, and heavier economic burden, however, few studies have investigated common molecular mechanisms of COPD and OP. Objective To explore the relationship between COPD and OP through bioinformatics analysis. Methods The miRNA microarray data of COPD and OP were retrieved from the Gene Expression Database (GEO), and the differentially expressed microRNAs (DEmiRNAs) were screened and the intersection was obtained. The Targetscan, miRDB, and miRWalk databases were used to predict the target genes of DEmiRNA, and the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the R package clusterProfiler, the STRING database was used to analyze the target protein-protein interaction network (PPI) and screens to determine the core modules and core genes. Results Two DEmiRNAs (miR-23a-5p, miR-194-3p) have been found in COPD and OP, which have predicted 76 and 114 target genes, respectively. GO functional annotations of miR-23a-5p were significantly enriched in CD40 signaling pathway, ubiquitin-conjugating enzyme activity, etc; KEGG pathways of miR-23a-5p were significantly enriched in ubiquitin-mediated proteolysis, folate biosynthesis, and regulation of actin cytoskeleton. GO function annotations of miR-194-3p were significantly enriched in T cell activation regulation, ubiquitin protein ligase activity, and DNA transcription factor binding; KEGG pathways of miR-194-3p were significantly enriched in cell adhesion molecules, intercellular tight junctions, and lysosomal pathway. PPI analysis found target coding proteins formed complex regulatory networks. Ten core genes (TP53, SRC, PXN, CHD4, SYK, TNRC6B, PML, KAT5, BRD1 and IGF2) were picked out among them, then we used the MCODE plugin found three core subnetworks. Conclusion Two identical DEmiRNAs (miR-23a-5p, miR-194-3p) exist in the peripheral blood of COPD and OP patients, which are important biomarkers for COPD patients with OP and may represent novel targets for diagnosis and treatment of COPD patients with OP.
Collapse
Affiliation(s)
- Hui Nie
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoli Zeng
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Hairong Bao
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Correspondence: Xiaoju Liu, Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People’s Republic of China, Email
| |
Collapse
|
3
|
miR194 hypomethylation regulates coronary artery disease pathogenesis. BMC Med Genomics 2022; 15:264. [PMID: 36529725 PMCID: PMC9759901 DOI: 10.1186/s12920-022-01421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary artery disease (CAD) is one of the most common heart diseases, characterized by the hardening and narrowing of arteries, resisting blood supply to cardiac muscle. Despite extensive research, the pathogenesis and therapeutic options for CAD remain limited. Epigenetic regulation plays a critical role in CAD progression. Here, we report a unique DNA methylation-miRNA-mRNA regulatory network for CAD, delineated through DNA methylation assays, miRNA and mRNA sequencing, bioinformatics analyses. We also identified key signaling pathways in this network, including the miR194 promoter-miR194-MAPK signaling pathway by pyrosequencing, methylation PCR, qRT-PCR. This pathway could play a role in CAD by apoptosis. Our findings suggested that this signaling pathway may be a potential therapeutic target for CAD. We believe that our study significantly contributes to an improved understanding of the role of specific miRNAs methylation, miRNA, and mRNAs in CAD pathogenesis.
Collapse
|
4
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
5
|
Yang P, Lian Q, Fu R, Ding GB, Amin S, Li Z, Li Z. Cucurbitacin E Triggers Cellular Senescence in Colon Cancer Cells via Regulating the miR-371b-5p/TFAP4 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2936-2947. [PMID: 35192356 DOI: 10.1021/acs.jafc.1c07952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The induction of cellular senescence is considered as a potent strategy to suppress cancer progression. Cucurbitacin E (CE) belongs to the triterpenoids and has received substantial attention for its antineoplastic property. However, the function of CE on cellular senescence remained elusive. Herein, we revealed that CE significantly induced cellular senescence in colorectal cancer (CRC) cells. The CE effects on the cellular senescence in CRC cells were confirmed by observing the common features of the senescence, such as the enhanced activity of senescence-associated β-galactosidase, γ-H2AX positive staining, and upregulation of senescence-associated proteins including p53, p27, and p21. Moreover, CE exerted pro-senescent effects in CRC cells via attenuating the transcription factor activating enhancer-binding protein 4 (TFAP4) expression, and the ectopic expression of TFAP4 blocked the CE-induced senescence. Mechanistically, CE treatment caused a robust increase in miR-371b-5p, which markedly repressed TFAP4. In contrast, silencing of miR-371b-5p counteracted the percentages of CE-induced senescent cells from 37.49 ± 2.61 to 7.06 ± 0.91% in HCT-116 cells via derepressing TFAP4 to attenuate the expression of p53, p21, and p16. Altogether, these results demonstrated that dietary CE induces CRC cellular senescence via modulating the miR-371b-5p/TFAP4 axis and presents opportunities for potential therapeutic strategies against CRC.
Collapse
Affiliation(s)
- Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Qing Lian
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Rong Fu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Guo-Bin Ding
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Sajid Amin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zongwei Li
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
Carini G, Musazzi L, Bolzetta F, Cester A, Fiorentini C, Ieraci A, Maggi S, Popoli M, Veronese N, Barbon A. The Potential Role of miRNAs in Cognitive Frailty. Front Aging Neurosci 2021; 13:763110. [PMID: 34867290 PMCID: PMC8632944 DOI: 10.3389/fnagi.2021.763110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Frailty is an aging related condition, which has been defined as a state of enhanced vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Cognitive impairment is also frequent in older people, often accompanying frailty. Age is the main independent risk factor for both frailty and cognitive impairment, and compelling evidence suggests that similar age-associated mechanisms could underlie both clinical conditions. Accordingly, it has been suggested that frailty and cognitive impairment share common pathways, and some authors proposed "cognitive frailty" as a single complex phenotype. Nevertheless, so far, no clear common underlying pathways have been discovered for both conditions. microRNAs (miRNAs) have emerged as key fine-tuning regulators in most physiological processes, as well as pathological conditions. Importantly, miRNAs have been proposed as both peripheral biomarkers and potential molecular factors involved in physiological and pathological aging. In this review, we discuss the evidence linking changes of selected miRNAs expression with frailty and cognitive impairment. Overall, miR-92a-5p and miR-532-5p, as well as other miRNAs implicated in pathological aging, should be investigated as potential biomarkers (and putative molecular effectors) of cognitive frailty.
Collapse
Affiliation(s)
- Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesco Bolzetta
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Alberto Cester
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Stefania Maggi
- Aging Branch, Neuroscience Institute, National Research Council, Padua, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Nicola Veronese
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy.,Geriatrics Section, Department of Medicine, University of Palermo, Palermo, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Zhang J, Liu J, Xu S, Yu X, Zhang Y, Li X, Zhang L, Yang J, Xing X. Bioinformatics analyses of the pathogenesis and new biomarkers of chronic obstructive pulmonary disease. Medicine (Baltimore) 2021; 100:e27737. [PMID: 34797299 PMCID: PMC8601278 DOI: 10.1097/md.0000000000027737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is one of the major cause of global death. The purpose of our analysis was to detect a more reliable biomarker and small-molecule drug candidates and to identify the precise mechanisms involved in COPD. METHODS Three data sets were downloaded from the Gene Expression Omnibus database and analysed by Gene Expression Omnibus 2R. Functional enrichment analyses were performed by Metascape. We use the STRING data to build a protein-protein interaction network. The targets of differentially expressed microRNA (DE miRNA) were predicted by the miRWalk database. Small-molecule drugs were predicted on connectivity map. RESULTS A total of 181 differentially expressed genes and 35 DE miRNAs were confirmed. The protein-protein interaction network including all integrated differentially expressed genes was constructed, and 4 modules were filtrated. The module genes were relative to immune, inflammatory and oxidative stress functions according to a pathway analysis. The top 20 key genes were screened. Among the DE miRNAs found to be regulating key genes, miR-194-3p, MiR-502-5p, MiR-5088-5p, MiR-3127-5p, and miR-23a-5p might be the most significant due to their high number of connecting nodes in COPD. In addition, cephaeline, emetine, gabapentin, and amrinone were found to be potential drugs to treat COPD patients. CONCLUSION Our study suggests that miR-194-3p, miR-502-5p, and miR-23a-5p might participate in the nosogenesis of COPD. In addition, 4 potential small-molecule drugs were considered potentially useful for treating COPD patients.
Collapse
Affiliation(s)
- Jihua Zhang
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Jie Liu
- The graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Shuanglan Xu
- The graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaochao Yu
- The graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Yi Zhang
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Xiao Li
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Liqiong Zhang
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiqian Xing
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
8
|
Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention. Semin Cancer Biol 2020; 72:46-64. [PMID: 32497683 DOI: 10.1016/j.semcancer.2020.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are key epigenomic regulators of biological processes in animals and plants. These small non coding RNAs form a complex networks that regulate cellular function and development. MiRNAs prevent translation by either inactivation or inducing degradation of mRNA, a major concern in post-transcriptional gene regulation. Aberrant regulation of gene expression by miRNAs is frequently observed in cancer. Overexpression of various 'oncomiRs' and silencing of tumor suppressor miRNAs are associated with various types of human cancers, although overall downregulation of miRNA expression is reported as a hallmark of cancer. Modulations of the total pool of cellular miRNA by alteration in genetic and epigenetic factors associated with the biogenesis of miRNA machinery. It also depends on the availability of cellular miRNAs from its store in the organelles which affect tumor development and cancer progression. Here, we have dissected the roles and pathways of various miRNAs during normal cellular and molecular functions as well as during breast cancer progression. Recent research works and prevailing views implicate that there are two major types of miRNAs; (i) intracellular miRNAs and (ii) extracellular miRNAs. Concept, that the functions of intracellular miRNAs are driven by cellular organelles in mammalian cells. Extracellular miRNAs function in cell-cell communication in extracellular spaces and distance cells through circulation. A detailed understanding of organelle driven miRNA function and the precise role of extracellular miRNAs, pre- and post-therapeutic implications of miRNAs in this scenario would open several avenues for further understanding of miRNA function and can be better exploited for the treatment of breast cancers.
Collapse
|
9
|
Su J, Wu F, Xia H, Wu Y, Liu S. Accurate cancer cell identification and microRNA silencing induced therapy using tailored DNA tetrahedron nanostructures. Chem Sci 2019; 11:80-86. [PMID: 32110359 PMCID: PMC7012044 DOI: 10.1039/c9sc04823e] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Accurate cancer cell identification and efficient therapy are extremely desirable and challenging in clinics. Here, we reported the first example of DNA tetrahedron nanostructures (DTNSs) to real-time monitor and image three intracellular miRNAs based on the fluorescence "OFF" to "ON" mode, as well as to realize cancer therapy induced by miRNA silencing. DTNSs were self-assembled by seven customized single-stranded nucleic acid chains containing three recognition sequences for target miRNAs. In the three vertexes of DTNSs, fluorophores and quenchers were brought into close proximity, inducing fluorescence quenching. In the presence of target miRNAs, fluorophores and quenchers would be separated, resulting in fluorescence recovery. Owing to the unique tetrahedron-like spatial structure, DTNSs displayed improved resistance to enzymatic digestion and high cellular uptake efficiency, and exhibited the ability to simultaneously monitor three intracellular miRNAs. DTNSs not only effectively distinguished tumor cells from normal cells, but also identified cancer cell subtypes, which avoided false-positive signals and significantly improved the accuracy of cancer diagnosis. Moreover, the DTNSs could also act as an anti-cancer drug; antagomir-21 (one recognition sequence) was detached from DTNSs to silence endogenous miRNA-21 inside cells, which would suppress cancer cell migration and invasion, and finally induce cancer cell apoptosis; the result was demonstrated by experiments in vitro and in vivo. It is anticipated that the development of smart nanoplatforms will open a door for cancer diagnosis and treatment in clinical systems.
Collapse
Affiliation(s)
- Juan Su
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Fubing Wu
- Department of Pathology , School of Basic Medical Sciences , Department of Oncology , The Affiliated Sir Run Run Hospital , State Key Laboratory of Reproductive Medicine , Key Laboratory of Antibody Technique of National Health Commission , Nanjing Medical University , Nanjing 211166 , China
| | - Hongping Xia
- Department of Pathology , School of Basic Medical Sciences , Department of Oncology , The Affiliated Sir Run Run Hospital , State Key Laboratory of Reproductive Medicine , Key Laboratory of Antibody Technique of National Health Commission , Nanjing Medical University , Nanjing 211166 , China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
10
|
Xu S, Wu W, Huang H, Huang R, Xie L, Su A, Liu S, Zheng R, Yuan Y, Zheng H, Sun X, Xiong X, Liu X. The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular senescence: Complement of the canonical p53/p21 pathway. Aging Cell 2019; 18:e12918. [PMID: 30848072 PMCID: PMC6516184 DOI: 10.1111/acel.12918] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/27/2018] [Accepted: 11/25/2018] [Indexed: 12/13/2022] Open
Abstract
Aging is a multifactorial process characterized by the progressive deterioration of physiological functions. Among the multiple molecular mechanisms, microRNAs (miRNAs) have increasingly been implicated in the regulation of Aging process. However, the contribution of miRNAs to physiological Aging and the underlying mechanisms remain elusive. We herein performed high-throughput analysis using miRNA and mRNA microarray in the physiological Aging mouse, attempted to deepen into the understanding of the effects of miRNAs on Aging process at the "network" level. The data showed that various p53 responsive miRNAs, including miR-124, miR-34a and miR-29a/b/c, were up-regulated in Aging mouse compared with that in Young mouse. Further investigation unraveled that similar as miR-34a and miR-29, miR-124 significantly promoted cellular senescence. As expected, mRNA microarray and gene co-expression network analysis unveiled that the most down-regulated mRNAs were enriched in the regulatory pathways of cell proliferation. Fascinatingly, among these down-regulated mRNAs, Ccna2 stood out as a common target of several p53 responsive miRNAs (miR-124 and miR-29), which functioned as the antagonist of p21 in cell cycle regulation. Silencing of Ccna2 remarkably triggered the cellular senescence, while Ccna2 overexpression delayed cellular senescence and significantly reversed the senescence-induction effect of miR-124 and miR-29. Moreover, these p53 responsive miRNAs were significantly up-regulated during the senescence process of p21-deficient cells; overexpression of p53 responsive miRNAs or knockdown of Ccna2 evidently accelerated the cellular senescence in the absence of p21. Taken together, our data suggested that the p53/miRNAs/Ccna2 pathway might serve as a novel senescence modulator independent of p53/p21 pathway.
Collapse
Affiliation(s)
- Shun Xu
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- The Scientific Research Center of Dongguan Guangdong Medical University Dongguan China
| | - Weijia Wu
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- The Scientific Research Center of Dongguan Guangdong Medical University Dongguan China
| | - Haijiao Huang
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- The Scientific Research Center of Dongguan Guangdong Medical University Dongguan China
| | - Ruxiao Huang
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- The Scientific Research Center of Dongguan Guangdong Medical University Dongguan China
| | - Luoyijun Xie
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- The Scientific Research Center of Dongguan Guangdong Medical University Dongguan China
| | - Ailing Su
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- The Scientific Research Center of Dongguan Guangdong Medical University Dongguan China
| | - Shuang Liu
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- The Scientific Research Center of Dongguan Guangdong Medical University Dongguan China
| | - Ruinian Zheng
- Department of Oncology Dongguan People's Hospital Dongguan China
| | - Yuan Yuan
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- The Scientific Research Center of Dongguan Guangdong Medical University Dongguan China
| | - Hui‐ling Zheng
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- The Scientific Research Center of Dongguan Guangdong Medical University Dongguan China
| | - Xuerong Sun
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- The Scientific Research Center of Dongguan Guangdong Medical University Dongguan China
| | - Xing‐dong Xiong
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- Institute of Biochemistry & Molecular Biology Guangdong Medical University Zhanjiang China
| | - Xinguang Liu
- Institute of Aging Research Guangdong Medical University Dongguan China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
- Institute of Biochemistry & Molecular Biology Guangdong Medical University Zhanjiang China
| |
Collapse
|
11
|
Fu R, Yang P, Sajid A, Li Z. Avenanthramide A Induces Cellular Senescence via miR-129-3p/Pirh2/p53 Signaling Pathway To Suppress Colon Cancer Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4808-4816. [PMID: 30888162 DOI: 10.1021/acs.jafc.9b00833] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular senescence is the state of irreversible cell cycle arrest that provides a blockade during oncogenic transformation and tumor development. Avenanthramide A (AVN A) is an active ingredient exclusively extracted from oats, which possesses antioxidant, anti-inflammatory, and anticancer activities. However, the underlying mechanism(s) of AVN A in the prevention of cancer progression remains unclear. In the current study, we revealed that AVN A notably attenuated tumor formation in an azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model. AVN A treatment triggered cellular senescence in human colon cancer cells, evidenced by enlarging cellular size, upregulating β-galactosidase activity, γ-H2AX positive staining, and G1 phase arrest. Moreover, AVN A treatment significantly increased the expression of miR-129-3p, which markedly repressed the E3 ubiquitin ligase Pirh2 and two other targets, IGF2BP3 and CDK6. The Pirh2 silencing by miR-129-3p led to a significant increase in protein levels of p53 and its downstream target p21, which subsequently induced cell senescence. Taken together, our data indicate that miR-129-3p/Pirh2/p53 is a critical signaling pathway in AVN A induced cellular senescence and AVN A could be a potential chemopreventive strategy for cancer treatment.
Collapse
Affiliation(s)
- Rong Fu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education , Shanxi University , Taiyuan 030006 , People's Republic of China
- Institutes of Biomedical Sciences , Shanxi University , Taiyuan 030006 , People's Republic of China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education , Shanxi University , Taiyuan 030006 , People's Republic of China
- Institutes of Biomedical Sciences , Shanxi University , Taiyuan 030006 , People's Republic of China
| | - Amin Sajid
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education , Shanxi University , Taiyuan 030006 , People's Republic of China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education , Shanxi University , Taiyuan 030006 , People's Republic of China
- School of Life Sciences , Shanxi University , Taiyuan 030006 , People's Republic of China
| |
Collapse
|
12
|
Yao J, Shi Z, Ma X, Xu D, Ming G. lncRNA GAS5/miR-223/NAMPT axis modulates the cell proliferation and senescence of endothelial progenitor cells through PI3K/AKT signaling. J Cell Biochem 2019; 120:14518-14530. [PMID: 31026096 DOI: 10.1002/jcb.28713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Abstract
Endothelial progenitor cells (EPCs) have been reported to replace the damaged endothelial cells to repair the injured or dead endothelium. However, EPC senescence might lead to the failure in EPC function. Thus, developing an in-depth understanding of the mechanism of EPC senescence might provide novel strategies for related vascular disorders' treatments. Herein, nicotinamide phosphoribosyltransferase (NAMPT) overexpression could increase cell proliferation and suppress cell senescence in EPCs. miR-223 directly bound to the 3'-untranslated region of NAMPT to inhibit its expression, therefore modulating EPC proliferation and senescence through NAMPT and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling. Long noncoding RNA (lncRNA) GAS5 sponges miR-223, consequently downregulating miR-223 expression. GAS5 knockdown inhibited EPC proliferation and promoted senescence. GAS5 might serve as a competing endogenous RNA for miR-223 to counteract miR-223-mediated suppression on NAMPT, thus regulating EPC proliferation and senescence via the PI3K/AKT signaling pathway. In summary, our findings provide a solid experimental basis for understanding the role and mechanism of lncRNA GAS5/miR-223/NAMPT axis in EPC proliferation and senescence.
Collapse
Affiliation(s)
- Jiamei Yao
- International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Gerontology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zanhua Shi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinhua Ma
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daomiao Xu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangfeng Ming
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Zhou T, Zhong Y, Hu Y, Sun C, Wang Y, Wang G. PM 2.5 downregulates miR-194-3p and accelerates apoptosis in cigarette-inflamed bronchial epithelium by targeting death-associated protein kinase 1. Int J Chron Obstruct Pulmon Dis 2018; 13:2339-2349. [PMID: 30122914 PMCID: PMC6078088 DOI: 10.2147/copd.s168629] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Persistent exposure to cigarette smoke or biomass fuels induces oxidative stress and apoptosis in bronchial epithelium, which is one of the most important pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Fine particulate matter (PM2.5) is an aggravating risk factor of COPD exacerbation. Animal evidence showed PM2.5accelerated lung inflammation and oxidative stress in COPD mice, but the mechanism is still not clear. Recently, we found that miR-194-3p is a novel biomarker of both COPD and PM2.5 exposure, and miR-194 family has been reported to be involved in cell proliferation and apoptosis. Thus, we propose a hypothesis: PM2.5 can accelerate apoptotic response of airway epithelial cells in COPD and miR-194 is a potential involved regulator. Materials and methods Human bronchial epithelial cells (HBEpiCs) were treated with normal media, cigarette smoke solution (CSS) and PM2.5-CSS for 24 h. miR-194-3p mimics, inhibitors and scrambled controls were non-transfected or pre-transfected into HBEpiCs for 48 h. MircroRNAs and mRNA expression were quantified by qRT-PCR. Protein expression was analyzed by western blotting. Caspase activities, mitochondrial membrane potential and TUNEL-positive cells were detected to analyze apoptosis. Bioinformatics and luciferase analysis were used to identify the predicted binding site of miR-194-3p and potential targets. Results In our study, we found that PM2.5 significantly aggravated apoptosis in cigarette-inflamed HBEpiCs. miR-194-3p was dramatically downregulated in PM2.5-CSS-treated HBEpiCs. Bioinformatics and luciferase experiments reported that death-associated protein kinase 1 (DAPK1), regulating caspase 3 activities in apoptosis, was directly targeted by miR-194-3p. Inhibition of miR-194-3p increased DAPK1 expression and apoptosis in normal HBEpiCs. Importantly, overexpression of miR-194-3p suppressed apoptosis in PM2.5-CSS HBEpiCs. Conclusion These results suggested that miR-194-3p was a protective regulator involved in apoptosis pathway and a potential therapeutic target for treatment of bronchial epithelial injury aggravation induced by PM2.5.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| | - Yijue Zhong
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| | - Yan Hu
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| | - Chao Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| | - Yunxia Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| |
Collapse
|