1
|
Wang Y, Lao Y, Li R, You C, Qing L, Xiao X, Liu S, Wang W, Zhao Y, Dong Z. Network pharmacological analysis and experimental study of melatonin in chronic prostatitis/chronic pelvic pain syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8691-8706. [PMID: 38822120 DOI: 10.1007/s00210-024-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
This study is aimed at exploring the potential mechanisms of melatonin (MT) in treating chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) using network pharmacology and experimental study. The target genes of MT were acquired from the Swiss Target Prediction, SuperPred, SEA, and PharmMapper databases, and the CP/CPPS targets were collected based on OMIM, DisGeNET, and GeneCards databases. The intersection of MT and CP/CPPS target genes was analyzed. A PPI network was constructed using Cytoscape to identify core targets. The shared targets underwent GO and KEGG enrichment analyses by Using R software. Molecular docking of MT with core targets was performed using AutoDock and PyMOL. GROMACS software was used for molecular dynamics simulation. And using cell experiments to verify the potential effect of MT in CP/CPPS. Network pharmacology analysis reveals 284 shared targets between MT and CP/CPPS, with AKT1, SRC, HSP90AA1, PTGS2, BCL2L1, ALB, CASP3, NFKB1, HIF1A, and ESR1 identified as key targets. Enrichment analysis indicates that MT affects CP/CPPS through various biological processes, and pathway analysis emphasizes the significance of PI3K-Akt, MAPK, Ras, FoxO, HIF-1, EGFR, and apoptosis pathways. Molecular docking confirms strong binding between MT and core targets. It is worth noting that the molecular dynamics simulation showed that the average binding free energy of AKT1, PTGS2, ALB, HSP90AA1 proteins, and MT was - 26.15, - 29.48, - 18.59, and - 20.09 kcal/mol, respectively. These results indicated that AKT1, PTGS2, ALB, and HSP90AA1 proteins were strongly bound to MT. Cell experiments demonstrate that MT can inhibit the secretion of IL-1β, IL-6, and TNF-α in LPS-induced RWPE-1 cells, alleviate inflammation, and suppress cell apoptosis and oxidative stress. Network pharmacology, molecular docking, molecular dynamics simulation, and cell experiments showed that MT could play a role in CP/CPPS by regulating multiple targets and pathways. These findings provide an important scientific basis for further exploration of the molecular mechanism and clinical application of MT in CP/CPPS treatment and are expected to provide new ideas and directions for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Yongfeng Lao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Rongxin Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Chengyu You
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Liangliang Qing
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Xi Xiao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Shuai Liu
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Wenyun Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Yu Zhao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China
| | - Zhilong Dong
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
- Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China.
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
2
|
Armandeh M, Bameri B, Haghi-Aminjan H, Foroumadi R, Ataei M, Hassani S, Samadi M, Shayesteh MRH, Abdollahi M. A systematic review on the role of melatonin and its mechanisms on diabetes-related reproductive impairment in non-clinical studies. Front Endocrinol (Lausanne) 2022; 13:1022989. [PMID: 36303864 PMCID: PMC9592976 DOI: 10.3389/fendo.2022.1022989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Diabetes-induced reproductive complications can lead to subfertility and infertility, raising the need to protect reproductive organs. There are limited medications used to improve reproductive health in diabetic patients. Melatonin, mainly produced by the pineal gland, may improve diabetes-associated reproductive complications through various mechanisms and may be a preferred candidate to protect the reproductive system. The present review aims to elucidate the underlying mechanisms of melatonin's effect on the reproductive system adversely affected by diabetes mellitus (DM). METHODS A comprehensive systematic literature electronic search was done using the PRISMA guidelines. Web of Science, PubMed, Embase, and Scopus were searched for publications up to June 2022. Search terms were selected based on the study purpose and were explored in titles and abstracts. After screening, out of a total of 169 articles, 14 pertinent articles were included based on our inclusion and exclusion criteria. RESULTS The results of studies using rats and mice suggest that DM adversely affects reproductive tissues, including testes and epididymis, prostate, corpus cavernosum, and ovary leading to alterations in histological and biochemical parameters compared to the normal groups. Treatment with melatonin improves oxidative stress, blocks apoptosis induced by endoplasmic reticulum stress and caspase activation, reduces pro-inflammation cytokines, and enhances steroidogenesis. CONCLUSION Melatonin exerted a protective action on the impaired reproductive system in in-vivo and in-vitro models of DM. The topic has to be followed up in human pregnancy cases that will need more time to be collected and approved.
Collapse
Affiliation(s)
- Maryam Armandeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- *Correspondence: Hamed Haghi-Aminjan, ; Mohammad Abdollahi, ;
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Ataei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran
| | | | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Hamed Haghi-Aminjan, ; Mohammad Abdollahi, ;
| |
Collapse
|
3
|
Albazal A, Delshad AA, Roghani M. Melatonin reverses cognitive deficits in streptozotocin-induced type 1 diabetes in the rat through attenuation of oxidative stress and inflammation. J Chem Neuroanat 2020; 112:101902. [PMID: 33276072 DOI: 10.1016/j.jchemneu.2020.101902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/06/2020] [Accepted: 11/28/2020] [Indexed: 12/30/2022]
Abstract
Uncontrolled diabetes mellitus (DM) is linked to attentional deficits and cognition deterioration. The neurohormone melatonin is an endogenous synchronizer of circadian rhythms with multiple protective properties. This research was designed to assess its effect against learning and memory decline in streptozotocin (STZ)-induced diabetic rats. Rats were assigned to control, melatonin-treated control, diabetic, and melatonin-treated diabetic groups. Melatonin was administered i.p. at a dose of 10 mg/kg/day for 47 days. Treatment of diabetic rats with melatonin reversed decline of spatial recognition memory in Y maze, performance of rats in novel object discrimination, and retention and recall in passive avoidance tasks. Furthermore, melatonin appropriately attenuated hippocampal malondialdehyde (MDA) and reactive oxygen species (ROS) and improved superoxide dismutase (SOD) activity and improved mitochondrial membrane potential (MMP) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) with no significant effect on nitrite, glutathione (GSH) and catalase activity. Besides, hippocampal level of acetylcholinesterase (AChE), glial fibrillary acidic protein (GFAP), nuclear factor-kappaB (NF-κB), interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) decreased following melatonin treatment. There was also a reduction of dendritic spines of pyramidal neurons of hippocampal CA1 area in diabetic group that was significantly alleviated upon melatonin treatment. Melatonin could ameliorate learning and memory disturbances in diabetic rats through mitigation of cholinesterase activity, astrocytes, oxidative stress and inflammation and also via upregulation of some antioxidants in addition to its prevention of dendritic spine loss.
Collapse
Affiliation(s)
- Ala Albazal
- School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|