1
|
Guo Q, Li T, Qu Y, Liang M, Ha Y, Zhang Y, Wang Q. New research development on trans fatty acids in food: Biological effects, analytical methods, formation mechanism, and mitigating measures. Prog Lipid Res 2023; 89:101199. [PMID: 36402189 DOI: 10.1016/j.plipres.2022.101199] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The trans fatty acids (TFAs) in food are mainly generated from the ruminant animals (meat and milk) and processed oil or oil products. Excessive intake of TFAs (>1% of total energy intake) caused more than 500,000 deaths from coronary heart disease and increased heart disease risk by 21% and mortality by 28% around the world annually, which will be eliminated in industrially-produced trans fat from the global food supply by 2023. Herein, we aim to provide a comprehensive overview of the biological effects, analytical methods, formation and mitigation measures of TFAs in food. Especially, the research progress on the rapid, easy-to-use, and newly validated analytical methods, new formation mechanism, kinetics, possible mitigation mechanism, and new or improved mitigation measures are highlighted. We also offer perspectives on the challenges, opportunities, and new directions for future development, which will contribute to the advances in TFAs research.
Collapse
Affiliation(s)
- Qin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| | - Tian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yang Qu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Manzhu Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yiming Ha
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yu Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, PR China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| |
Collapse
|
2
|
Krusinski L, Sergin S, Jambunathan V, Rowntree JE, Fenton JI. Attention to the Details: How Variations in U.S. Grass-Fed Cattle-Feed Supplementation and Finishing Date Influence Human Health. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.851494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As the global population increases, so does meat consumption. This trend is accompanied by concerns regarding the meat industry, and consumers are demanding transparency on the environmental and health effects of the products they are purchasing. Many leading health organizations recommend reducing red meat consumption. Nevertheless, no differentiation is made among red meats and beef. The beef production system is generally ignored despite nutritional differences between grain- and grass-fed beef. Compared to grain-fed beef, grass-fed beef contains a healthier fatty acid profile, including more omega-3 polyunsaturated fatty acids and conjugated linoleic acid, and increased concentrations of phytochemicals desired by health-conscious customers. However, there is a lack of consistency among grass-fed beef in the United States regarding clear product labeling and cattle dietary components. Grass-fed beef labeling confusion has emerged, including misunderstandings between grass-fed and grass-finished beef. Along with this, previous studies observed significant nutritional variation among grass-finished beef from different producers across the country. Cattle diet has the strongest influence on the nutritional composition of beef. Therefore, understanding differences in feeding practices is key to understanding differing nutritional quality of grass-fed beef. Feeding cattle diverse pastures composed of multiple plant species including grasses and legumes managed in a rotational grazing fashion results in higher omega-3 polyunsaturated fatty acids and phytochemical levels in beef compared to feedlots and monocultures. Seasonal differences including changes in temperature, rainfall, grazing practices, and plant growth cycles affect the nutritional composition of feeds and ultimately meat. Additional feeds utilized in grass-fed beef production systems such as conserved forages may reduce or increase health-promoting nutrients in grass-fed beef, while supplements such as grape byproducts and flaxseed may improve its nutritional profile. Further research should measure the effects of individual feedstuff and the finishing period on the nutritional profile on grass-fed beef. A better understanding of these details will be a step toward the standardization of pasture-raised ruminant products, strengthening the relationship between grass-fed beef consumption and human health.
Collapse
|
3
|
Pipoyan D, Beglaryan M, Stepanyan S, Merendino N. Trans-Fatty Acids in Fast-Food and Intake Assessment for Yerevan’s Population, Armenia. Foods 2022; 11:foods11091294. [PMID: 35564017 PMCID: PMC9105336 DOI: 10.3390/foods11091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
There are stringent regulations applicable for trans-fatty acid (TFA) limitations from food supply across the world. However, in Armenia, there is a scarcity of data on TFA content in food products and their consumption levels. Considering that fast-food is among the major contributors to TFA intake, this study aims to assess the dietary exposure of TFAs through the consumption of fast-food in Yerevan, Armenia. Eleven types of fast-food were included in the study. The Food Frequency Questionnaire (FFQ) was used to evaluate daily fast-food consumption. TFA contents in samples were determined using gas chromatography-mass spectrometry. Mean daily fast-food consumption values ranged from 14.68 g/day to 76.09 g/day, with popcorn as the lowest and pastry as the highest consumed food. The study results indicate that the aggregate average daily intake (DI) of TFA is 0.303 g/day. Even though TFA DI values do not exceed the WHO limit of 1%, they substantially contribute to daily TFA intake and may exceed the limit when combined with other foods. Hence, it is recommended to carry out continuous monitoring of TFA content in the food supply to ensure consumer health protection.
Collapse
Affiliation(s)
- Davit Pipoyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (M.B.); (S.S.)
| | - Meline Beglaryan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (M.B.); (S.S.)
| | - Seda Stepanyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (M.B.); (S.S.)
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
- Correspondence: ; Tel.: +39-076-135-7133
| |
Collapse
|
4
|
Tang C, Wan Z, Chen Y, Tang Y, Fan W, Cao Y, Song M, Qin J, Xiao H, Guo S, Tang Z. Structure and Properties of Organogels Prepared from Rapeseed Oil with Stigmasterol. Foods 2022; 11:939. [PMID: 35407025 PMCID: PMC8997424 DOI: 10.3390/foods11070939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
This work used the natural ingredient stigmasterol as an oleogelator to explore the effect of concentration on the properties of organogels. Organogels based on rapeseed oil were investigated using various techniques (oil binding capacity, rheology, polarized light microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy) to better understand their physical and microscopic properties. Results showed that stigmasterol was an efficient and thermoreversible oleogelator, capable of structuring rapeseed oil at a stigmasterol concentration as low as 2% with a gelation temperature of 5 °C. The oil binding capacity values of organogels increased to 99.74% as the concentration of stigmasterol was increased to 6%. The rheological properties revealed that organogels prepared with stigmasterol were a pseudoplastic fluid with non-covalent physical crosslinking, and the G' of the organogels did not change with the frequency of scanning increased, showing the characteristics of strong gel. The microscopic properties and Fourier transform infrared spectroscopy showed that stigmasterol formed rod-like crystals through the self-assembly of intermolecular hydrogen bonds, fixing rapeseed oil in its three-dimensional structure to form organogels. Therefore, stigmasterol can be considered as a good organogelator. It is expected to be widely used in food, medicine, and other biological-related fields.
Collapse
Affiliation(s)
- Caili Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Zheng Wan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yiyun Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Wei Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mingyue Song
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingping Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| |
Collapse
|
5
|
Davis H, Magistrali A, Butler G, Stergiadis S. Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods 2022; 11:foods11050646. [PMID: 35267281 PMCID: PMC8909876 DOI: 10.3390/foods11050646] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Livestock production is under increasing scrutiny as a component of the food supply chain with a large impact on greenhouse gas emissions. Amidst growing calls to reduce industrial ruminant production, there is room to consider differences in meat quality and nutritional benefits of organic and/or pasture-based management systems. Access to forage, whether fresh or conserved, is a key influencing factor for meat fatty acid profile, and there is increasing evidence that pasture access is particularly beneficial for meat’s nutritional quality. These composition differences ultimately impact nutrient supply to consumers of conventional, organic and grass-fed meat. For this review, predicted fatty acid supply from three consumption scenarios were modelled: i. average UK population National Diet and Nutrition Survey (NDNS) (<128 g/week) red meat consumption, ii. red meat consumption suggested by the UK National Health Service (NHS) (<490 g/week) and iii. red meat consumption suggested by the Eat Lancet Report (<98 g/week). The results indicate average consumers would receive more of the beneficial fatty acids for human health (especially the essential omega-3, alpha-linolenic acid) from pasture-fed beef, produced either organically or conventionally.
Collapse
Affiliation(s)
- Hannah Davis
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; (A.M.); (G.B.)
- Correspondence: (H.D.); (S.S.)
| | - Amelia Magistrali
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; (A.M.); (G.B.)
| | - Gillian Butler
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; (A.M.); (G.B.)
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- Correspondence: (H.D.); (S.S.)
| |
Collapse
|
6
|
Kawai T, Matsumori N, Otsuka K. Recent advances in microscale separation techniques for lipidome analysis. Analyst 2021; 146:7418-7430. [PMID: 34787600 DOI: 10.1039/d1an00967b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review paper highlights the recent research on liquid-phase microscale separation techniques for lipidome analysis over the last 10 years, mainly focusing on capillary liquid chromatography (LC) and capillary electrophoresis (CE) coupled with mass spectrometry (MS). Lipids are one of the most important classes of biomolecules which are involved in the cell membrane, energy storage, signal transduction, and so on. Since lipids include a variety of hydrophobic compounds including numerous structural isomers, lipidomes are a challenging target in bioanalytical chemistry. MS is the key technology that comprehensively identifies lipids; however, separation techniques like LC and CE are necessary prior to MS detection in order to avoid ionization suppression and resolve structural isomers. Separation techniques using μm-scale columns, such as a fused silica capillary and microfluidic device, are effective at realizing high-resolution separation. Microscale separation usually employs a nL-scale flow, which is also compatible with nanoelectrospray ionization-MS that achieves high sensitivity. Owing to such analytical advantages, microscale separation techniques like capillary/microchip LC and CE have been employed for more than 100 lipidome studies. Such techniques are still being evolved and achieving further higher resolution and wider coverage of lipidomes. Therefore, microscale separation techniques are promising as the fundamental technology in next-generation lipidome analysis.
Collapse
Affiliation(s)
- Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
7
|
Pipoyan D, Stepanyan S, Stepanyan S, Beglaryan M, Costantini L, Molinari R, Merendino N. The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods 2021; 10:2452. [PMID: 34681504 PMCID: PMC8535577 DOI: 10.3390/foods10102452] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Health effects of trans fatty acids (TFAs) on human organisms can vary according to their type, structure, composition, and origin. Even though the adverse health effects of industrial TFAs (iTFAs) have been widely discussed, the health effects of natural TFAs (nTFAs) are still questionable. Hence, it is important to review the literature and provide an overall picture on the health effects of different TFAs coming from industrial and ruminant sources, underlining those types that have adverse health effects as well as suggesting methods for reducing their harmful effects. Multiple databases (PubMed, Medline, Cochrane Library, etc.) were searched with the key words "trans fatty acid sources", "ruminant", "industrial", "conjugated trans linoleic acid", "human", "coronary heart disease", "cancer", etc. Reference lists of the studies were scanned discussing the health effects of iTFAs and nTFAs. The review of the literature showed that iTFAs are found to be more harmful than ruminant-produced nTFAs. Although several beneficial effects (such as reduced risk of diabetes) for nTFAs have been observed, they should be used with caution. Since during labeling it is usually not mentioned whether the TFAs contained in food are of industrial or natural origin, the general suggestion is to reduce their consumption.
Collapse
Affiliation(s)
- Davit Pipoyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Stella Stepanyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Seda Stepanyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Meline Beglaryan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; (L.C.); (R.M.)
| | - Romina Molinari
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; (L.C.); (R.M.)
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; (L.C.); (R.M.)
| |
Collapse
|