1
|
Song D, Tang X, Du J, Tao K, Li Y. Diazepam inhibits LPS-induced pyroptosis and inflammation and alleviates pulmonary fibrosis in mice by regulating the let-7a-5p/MYD88 axis. PLoS One 2024; 19:e0305409. [PMID: 38875245 PMCID: PMC11178199 DOI: 10.1371/journal.pone.0305409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Pulmonary fibrosis caused by lung injury is accompanied by varying degrees of inflammation, and diazepam can reduce the levels of inflammatory factors. Therefore, the purpose of this study was to determine whether diazepam can inhibit inflammation and ameliorate pulmonary fibrosis by regulating the let-7a-5p/myeloid differentiation factor 88 (MYD88) axis. METHODS Lipopolysaccharide (LPS) was used to induce cell pyroptosis in an animal model of pulmonary fibrosis. After treatment with diazepam, changes in cell proliferation and apoptosis were observed, and the occurrence of inflammation and pulmonary fibrosis in the mice was detected. RESULTS The results showed that LPS can successfully induce cell pyroptosis and inflammatory responses and cause lung fibrosis in mice. Diazepam inhibits the expression of pyroptosis-related factors and inflammatory factors; moreover, it attenuates the occurrence of pulmonary fibrosis in mice. Mechanistically, diazepam can upregulate the expression of let-7a-5p, inhibit the expression of MYD88, and reduce inflammation and inhibit pulmonary fibrosis by regulating the let-7a-5p/MYD88 axis. CONCLUSION Our findings indicated that diazepam can inhibit LPS-induced pyroptosis and inflammatory responses and alleviate pulmonary fibrosis in mice by regulating the let-7a-5p/MYD88 axis.
Collapse
Affiliation(s)
- Duanyi Song
- Department of Anesthesiology, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xuefang Tang
- Department of Anesthesiology, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Juan Du
- Department of Anesthesiology, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Kang Tao
- Department of Anesthesiology, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yun Li
- Department of Anesthesiology, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
2
|
Wu X, Chen J, Sun W, Hart DA, Ackermann PW, Ahmed AS. Network proteomic analysis identifies inter-alpha-trypsin inhibitor heavy chain 4 during early human Achilles tendon healing as a prognostic biomarker of good long-term outcomes. Front Immunol 2023; 14:1191536. [PMID: 37483617 PMCID: PMC10358850 DOI: 10.3389/fimmu.2023.1191536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
The suboptimal or protracted regeneration of injured connective tissues often results in significant dysfunction, pain, and functional disability. Despite the prevalence of the condition, few studies have been conducted which focused on biomarkers or key molecules involved in processes governing healing outcomes. To gain insight into injured connective tissue repair, and using the Achilles tendon as a model system, we utilized quantitative proteomic and weighted co-expression network analysis of tissues acquired from Achilles tendon rupture (ATR) patients with different outcomes at 1-year postoperatively. Two modules were detected to be associated with prognosis. The initial analysis identified inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) as a biomarker or hub protein positively associated with better healing outcomes. Additional analysis identified the beneficial role of ITIH4 in inflammation, cell viability, apoptosis, proliferation, wound healing, and for the synthesis of type I collagen in cultured fibroblasts. Functionally, the effects of ITIH4 were found to be mediated by peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathways. Taken together, these findings suggest that ITIH4 plays an important role in processes of connective tissue repair and advocate for the potential of ITIH4 as a therapeutic target for injured connective tissue repair. Trial registration http://clinicaltrials.gov, identifiers NCT02318472, NCT01317160.
Collapse
Affiliation(s)
- Xinjie Wu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Junyu Chen
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wei Sun
- Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - David A. Hart
- Department of Surgery, Faculty of Kinesiology and the McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Paul W. Ackermann
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aisha S. Ahmed
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Mei S, Tang R, Hu Y, Feng J, Xu Q, Zhou Y, Zhong H, Gao Y, He Z, Xing S. Integrin β3 Mediates Sepsis and Mechanical Ventilation-Associated Pulmonary Fibrosis Through Glycometabolic Reprogramming. J Transl Med 2023; 103:100021. [PMID: 36748196 DOI: 10.1016/j.labinv.2022.100021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023] Open
Abstract
Mechanical ventilation (MV) has become a clinical first-line treatment option for patients with respiratory failure. However, it was unclear whether MV further aggravates the process of sepsis-associated pulmonary fibrosis and eventually leads to sepsis and mechanical ventilation-associated pulmonary fibrosis (S-MVPF). This study aimed to explore the mechanism of S-MVPF concerning integrin β3 activation in glycometabolic reprogramming of lung fibroblasts. We found that MV exacerbated sepsis-associated pulmonary fibrosis induced by lipopolysaccharide, which was accompanied by proliferation of lung fibroblasts, increased deposition of collagen in lung tissue, and increased procollagen type I carboxy-terminal propeptide in the bronchoalveolar lavage fluid. A large number of integrin β3- and pyruvate kinase M2-positive fibroblasts were detected in lung tissue after stimulation with lipopolysaccharide and MV, with an increase in lactate dehydrogenase A expression and lactate levels. S-MVPF was primarily attenuated in integrin β3-knockout mice, which also resulted in a decrease in the levels of pyruvate kinase M2, lactate dehydrogenase A, and lactate. In conclusion, MV aggravated sepsis-associated pulmonary fibrosis, with glycometabolic reprogramming mediated by integrin β3 activation. Thus, integrin β3-mediated glycometabolic reprogramming might be a potential therapeutic target for S-MVPF.
Collapse
Affiliation(s)
- Shuya Mei
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ri Tang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Hu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinhua Feng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Zhou
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Han Zhong
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Shunpeng Xing
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
4
|
Ge X, Sun Y, Tang Y, Lin J, Zhou F, Yao G, Su X. Circular RNA HECTD1 knockdown inhibits transforming growth factor-beta/ small mothers against decapentaplegic (TGF-β/Smad) signaling to reduce hypertrophic scar fibrosis. Bioengineered 2022; 13:7303-7315. [PMID: 35246019 PMCID: PMC8973857 DOI: 10.1080/21655979.2022.2048771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Scars are nearly impossible to avoid after a skin injury, but despite advancements in the treatment modalities, they remain a clinical problem, especially hypertrophic scars (HS). Many studies include the mechanism of formation and inhibition of HS, but it is not fully understood yet. Circular RNA HECTD1 (circHECTD1), for the first time, has been found to have roles in HS physiology. We determined the relative circHECTD1 levels in HS fibrous cells and tissues by RT-qPCR. Afterward, the effect of circHECTD1 knockdown on the proliferation, migration, invasion, fibrosis, and Transforming Growth Factor-beta/small mothers against decapentaplegic (TGF-β/Smad) signaling was studied using CCK-8, wound healing, Transwell, and western blot assays. After the role of circHECTD1 was clarified, its targeted micro RNA (miR) was predicted using the Starbase database, and we constructed a miR-142-3p mimic to study the details of its regulation mechanism. We used the TargetScan database to predict the downstream target high mobility group box 1 (HMGB1) of miR-142-3p, and the luciferase report assay verified the binding, and then its effect was determined by RT-qPCR. circHECTD1 is highly expressed in HS tissues and human skin hypertrophic scar fibroblasts (HSF); its loss of function inhibits cell proliferation, migration, invasion, fibrosis, and TGF-β/Smad signaling. However, miR-142-3p inhibitor reverses the effect of circHECTD1 on all the above-mentioned aspects, including HMGB1 expression. In conclusion, circHECTD1 knockdown interrupts TGF-β/Smad signaling through miR-142-3p/HMGB1 and suppresses scar fibrosis.
Collapse
Affiliation(s)
- Xiaojing Ge
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yute Sun
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Youzhi Tang
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing Lin
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fang Zhou
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Gang Yao
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Su
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Tang CJ, Xu J, Ye HY, Wang XB. Metformin prevents PFKFB3-related aerobic glycolysis from enhancing collagen synthesis in lung fibroblasts by regulating AMPK/mTOR pathway. Exp Ther Med 2021; 21:581. [PMID: 33850553 PMCID: PMC8027738 DOI: 10.3892/etm.2021.10013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Aerobic glycolysis has been shown to contribute to the abnormal activation of lung fibroblasts with excessive collagen deposition in lipopolysaccharide (LPS)-induced pulmonary fibrosis. Targeting aerobic glycolysis in lung fibroblasts might therefore be considered as a promising therapeutic approach for LPS-induced pulmonary fibrosis. In the present study, the aim was to investigate whether metformin, a widely used agent for treating type 2 diabetes, could alleviate LPS-induced lung fibroblast collagen synthesis and its potential underlying mechanisms. Different concentrations of metformin were used to treat the human lung fibroblast MRC-5 cells after LPS challenge. Indicators of aerobic glycolysis in MRC-5 cells were detected by measuring glucose consumption and lactate levels in culture medium in addition to lactate dehydrogenase activity in cellular lysates. The glucose consumption, lactate levels and the lactate dehydrogenase activity were measured respectively using colorimetric/fluorometric and ELISA kits. The effects of metformin in AMP-activated protein kinase (AMPK) activation was assessed by mitochondrial complex I activity kits. Collagen I, α-smooth muscle actin (α-SMA) and collagen III were used as markers of collagen synthesis, which was measured using western blotting, whereas phosphorylated (p-) AMPK, AMPK, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and mTOR were detected by western blotting. Metformin significantly decreased mitochondrial complex I activity and upregulated the expression of p-AMPK/AMPK protein in a concentration-dependent manner. Furthermore, the aerobic glycolysis mediated by PFKFB3 and collagen synthesis in LPS-treated MRC-5 cells was gradually inhibited with increasing concentrations of metformin. However, this inhibitory role of metformin on PFKFB3-meditaed aerobic glycolysis and collagen synthesis was prevented by treatments with 3BDO and compound C, which are specific mTOR activator and AMPK inhibitor, respectively. Taken together, the findings from this study suggested that metformin may prevent PFKFB3-associated aerobic glycolysis from enhancing collagen synthesis in lung fibroblasts via regulating the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Ci-Jun Tang
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Ji Xu
- Department of Emergency, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Hai-Yan Ye
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Xue-Bin Wang
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
6
|
Gao C, Zhang K, Liang F, Ma W, Jiang X, Wang H, Zhan H, Sonkoly E, Hu H, Zhao Z. Inhibition of the Ras/ERK1/2 pathway contributes to the protective effect of ginsenoside Re against intimal hyperplasia. Food Funct 2021; 12:6755-6765. [PMID: 34116563 DOI: 10.1039/d1fo00015b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neointimal hyperplasia is the major cause of carotid stenosis after vascular injury, which restricts the long-term efficacy of endovascular treatment and endarterectomy in preventing stenosis. Ginsenoside Re (Re) is a major active ingredient of ginseng having multifaceted pharmacological effects on the cardiovascular system, and is a potential treatment for restenosis. In this study, we demonstrated that Re treatment significantly inhibited vascular injury-induced neointimal thickening, reduced the intimal area and intima/media (I/M) ratio, increased the lumen area, and inhibited pro-inflammatory cytokines. In cultured A7R5 cells, Re inhibited LPS-induced proliferation and migration as evidenced by suppressed colony formation and shortened migration distance, accompanied by the downregulated expression of pro-inflammatory cytokines. Re promoted VSMC apoptosis induced by balloon injury in vivo and LPS challenge in vitro. Moreover, Re inhibited autophagy in VSMCs evoked by balloon injury and LPS as supported by reduced LC3II and increased p62 expressions. Suppression of autophagy with the specific autophagy inhibitor spautin-1 efficiently inhibited LPS-induced cell proliferation and inflammation and promoted caspase-3/7 activities. Mechanistically, we found that Re attenuated Ras/ERK1/2 expression in VSMCs in vivo and in vitro. The MEK1/2 inhibitor PD98059 showed similar effects to Re on cell proliferation, migration, apoptosis, and the levels of autophagy and cytokines. In conclusion, we provided significant evidence that Re inhibited vascular injury-induced neointimal thickening probably by promoting VSMC apoptosis and inhibiting autophagy via suppression of the Ras/MEK/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Chenying Gao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhou L, Li P, Zhang M, Han B, Chu C, Su X, Li B, Kang H, Ning J, Zhang B, Ma S, Su D, Pang Y, Niu Y, Zhang R. Carbon black nanoparticles induce pulmonary fibrosis through NLRP3 inflammasome pathway modulated by miR-96 targeted FOXO3a. CHEMOSPHERE 2020; 241:125075. [PMID: 31683435 DOI: 10.1016/j.chemosphere.2019.125075] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Carbon black nanoparticle (CBNP) is a core constituent of air pollutants like fine particulate matter (PM2.5) as well as a common manufactural material. It was proved to pose adverse effects on lung function and even provoke pulmonary fibrosis. However, the underlying mechanisms of CBNPs-induced pulmonary fibrosis remain unclear. The present study aimed to investigate the mechanism of fibrotic effects caused by CBNPs in rat lung and human bronchial epithelial (16HBE) cells. Forty-nine male rats were randomly subjected to 7 groups, means the 14-day exposure group (30 mg/m3), the 28-day exposure groups (5 mg/m3 and 30 mg/m3), the 90-day exposure group (30 mg/m3) and their respective controls. Rats were nose-only-inhaled CBNPs. 16HBE cells were treated with 0, 50, 100 and 200 μg/mL CBNPs respectively for 24 h. Besides, Forkhead transcription factor class O (FOXO)3a and miR-96 overexpression or suppression 16HBE cells were established to reveal relative mechanisms. Our results suggested CBNPs induced pulmonary fibrosis in time- and dose-dependent manners. CBNPs induced persisting inflammation in rat lung as observed by histopathology and cytology analyses in whole lung lavage fluid (WLL). Both in vivo and in vitro, CBNPs exposure significantly increased the expression of NLRP3 inflammasome, accompanied by the increased reactive oxygen species (ROS), decreased miR-96 and increased FOXO3a expressions dose -and time-dependently. MiR-96 overexpression or FOXO3a suppression could partially rescue the fibrotic effects through inhibiting NLRP3 inflammasome. Conclusively, our research show that CBNPs-induced pulmonary fibrosis was at least partially depended on activation of NLRP3 inflammasome which modulated by miR-96 targeting FOXO3a.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Peiyuan Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mengyue Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Bin Han
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Chen Chu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Binghua Li
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Hui Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Boyuan Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Shitao Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dong Su
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| |
Collapse
|
8
|
Diazepam inhibited lipopolysaccharide (LPS)-induced pyroptotic cell death and alleviated pulmonary fibrosis in mice by specifically activating GABAA receptor α4-subunit. Biomed Pharmacother 2019; 118:109239. [DOI: 10.1016/j.biopha.2019.109239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
|
9
|
P27 Promotes TGF- β-Mediated Pulmonary Fibrosis via Interacting with MTORC2. Can Respir J 2019; 2019:7157861. [PMID: 31641391 PMCID: PMC6770332 DOI: 10.1155/2019/7157861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Pulmonary fibrosis (PF), a progressive and life-threatening pulmonary disease, is the main pathological basis of interstitial lung disease (ILD) which includes the idiopathic pulmonary fibrosis (IPF). No effective therapeutic strategy for pulmonary fibrosis has been established. TGF-β signaling has emerged as the vital regulator of PF; however, the detailed molecular mechanisms of TGF-β in PF were uncertain. In the present study, we proved that inhibition of MTORC2 suppresses the expression of P27 in MRC5 and HLF cells. And in bleomycin-induced PF model, the expression of α-SMA and P27 was upregulated. Moreover, TGF-β application increased the level of α-SMA, vimentin, and P27 in MRC5 and HLF cells. Furthermore, P27 overexpression advanced the cell cycle process and promoted the proliferation of MRC5 and HLF cells. Finally, the rescue experiment showed that MTORC2 knockdown reversed P27 overexpression-induced cell cycle acceleration and proliferation. Thus, our results suggest that P27 is involved in TGF-β-mediated PF, which was regulated by MTORC2, providing a novel insight into the development of PF.
Collapse
|