1
|
Yang H, Wang S. Actively Targeted Nanomedicines: A New Perspective for the Treatment of Pregnancy-Related Diseases. Reprod Sci 2024; 31:2560-2575. [PMID: 38553575 DOI: 10.1007/s43032-024-01520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 09/14/2024]
Abstract
More than 20% of pregnant women experience serious complications during pregnancy, that gravely affect the safety of both the mother and the child. Due to the unique state of pregnancy, medication during pregnancy is subject to various restrictions. Nanotechnology is an emerging technology that has been the focus of extensive medical research, and great progress has recently been made in developing sensitive diagnostic modalities and efficient medical treatment. Accumulating evidence has shown that nanodrug delivery systems can significantly improve the targeting, reduce the toxicity and improve the bioavailability of drugs. Recently, some actively targeted nanomedicines have been explored in the treatment of pregnancy-related diseases. This article reviews common types of nanocarriers and active targeting ligands in common pregnancy-related diseases and complications such as preeclampsia, preterm birth, fetal growth restriction, and choriocarcinoma. Finally, the challenges and future prospects in the development of these nanomaterials are discussed, with the aim of providing guidance for future research directions.
Collapse
Affiliation(s)
- Hui Yang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, 250021, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
2
|
Pereira KV, Pacheco CO, Alves IA, Haas SE. A Systematic Patent Review (2008-2023) for Treatment in Pregnancy. Curr Med Chem 2024; 31:6288-6305. [PMID: 38659265 DOI: 10.2174/0109298673296246240410093401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION During pregnancy, the woman's body undergoes anatomical and physiological changes, making this period susceptible to maternal-fetal diseases and complications. The consequences of not treating pregnant women include premature birth, low birth weight fetuses, and postnatal behavior disorders. Developing new therapies can accelerate the discovery of safe and effective drugs, contributing to designing novel natural and synthetic products to treat complications the pregnancy. OBJECTIVE This study aimed to carry out a patent review to identify and explore trends in innovation and therapeutic strategies for treating pregnant women. METHODS The Espacenet and WIPO databases were used, with the inclusion criteria being the keywords "pregnancy and drug" and code A61k, from 2008 to 2023, and as exclusion were the access to the patent and focus on human pregnant women. RESULTS After the final screening, 32 patents were selected, with strategies for the treatment of diseases in pregnant women. Of these, 20 patents are on preclinical studies on animals and 12 on pregnant women. It was observed that universities lead the ranking of applications (17/32), and China has the highest number of patents (18/32). Most findings contain herbal medicines and/or the association of natural extracts with synthetic drugs. CONCLUSION From this perspective, new drug administration systems were also developed, which can be a promising source for obtaining new medicines for the treatment of pregnant women; however, research is still limited and shows a gap in stimulating the rapid development of safe drugs that improve the health of pregnant women.
Collapse
Affiliation(s)
- Kélle Velasques Pereira
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima no. 1000, Santa Maria, 97105-900, RS, Brazil
| | - Camila Oliveira Pacheco
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima no. 1000, Santa Maria, 97105-900, RS, Brazil
| | - Izabel Almeida Alves
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, UFBA, Salvador, 40170-115, BA, Brazil
| | - Sandra Elisa Haas
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima no. 1000, Santa Maria, 97105-900, RS, Brazil
- Pharmacology and Pharmacometric Laboratory, LABFAR, Federal University of Pampa, Uruguaiana Campus, Brazil
| |
Collapse
|
3
|
van Kammen CM, van Woudenberg SJ, Schiffelers R, Terstappen F, Lely AT. Nanomedicines: An approach to treat placental insufficiency and the current challenges. J Control Release 2023; 360:57-68. [PMID: 37330012 DOI: 10.1016/j.jconrel.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/16/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Preeclampsia and fetal growth restriction are common pregnancy complications that significantly impact perinatal health and offspring development later in life. The origin of these complex syndromes overlap in placental insufficiency. Progress in developing treatments for maternal, placental or fetal health is mainly limited by the risk of maternal and fetal toxicity. Nanomedicines are a promising approach to safely treat pregnancy complications since they can regulate drug interaction with the placenta to enhance efficacy of the treatment while minimizing exposure of the fetus. METHODS This narrative review discusses the current developments and challenges of nanomedicines during pregnancy with a focus on preclinical models of placenta insufficiency syndromes. Firstly, we outline the safety requirements and potential therapeutic maternal and placental targets. Secondly, we review the prenatal therapeutic effects of the nanomedicines that have been tested in experimental models of placental insufficiency syndromes. RESULTS The majority of liposomes and polymeric drug delivery system show promising results regarding the prevention of trans-placental passage nanomedicines in uncomplicated and complicated pregnancies. The others two studied classes, quantum dots and silicon nanoparticles, have been investigated to a limited extent in placental insufficiency syndromes. Characteristics of the nanoparticles such as charge, size, and timing of administration have been shown to influence the trans-placental passage. The few available preclinical therapeutic studies on placental insufficiency syndromes predominantly show beneficial effects of nanomedicines on both maternal and fetal health, but demonstrate contradicting results on placental health. Interpretation of results in this field is complicated by the fact that results are influenced by the choice of animal species and model, gestational age, placental maturity and integrity, and nanoparticle administration route. CONCLUSION Nanomedicines form a promising therapeutic approach during (complicated) pregnancies mainly by reducing fetal toxicity and regulating drug interaction with the placenta. Different nanomedicines have been proven to effectively prevent trans-placental passage of encapsulated agents. This can be expected to dramatically reduce risks for fetal adverse effects. Furthermore, a number of these nanomedicines positively impacted maternal and fetal health in animal models for placental insufficiency. Demonstrating that effective drug concentrations can be reached in the target tissue. While these first animal studies are encouraging, more research is needed to better understand the influence of the pathophysiology of this multi-factorial disease before implementation in clinical practice can be considered. Therefore, extensive evaluation of safety and efficacy of these targeted nanoparticles is needed within multiple animal, in vitro, and/or ex vivo models. This may be complemented by diagnostic tools to assess the disease status to identify the best time to initiate treatment. Together these investigations should contribute to building confidence in the safety of nanomedicines for treating mother and child, as safety has, understandably, the highest priority in this sensitive patient groups.
Collapse
Affiliation(s)
- C M van Kammen
- University Medical Center Utrecht, Department CDL research, Nano medicine, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.
| | - S J van Woudenberg
- University Medical Center Utrecht, Wilhelmina Children's Hospital, Department of Woman and Baby, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - R Schiffelers
- University Medical Center Utrecht, Department CDL research, Nano medicine, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - F Terstappen
- University Medical Center Utrecht, Wilhelmina Children's Hospital, Department of Woman and Baby, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - A T Lely
- University Medical Center Utrecht, Wilhelmina Children's Hospital, Department of Woman and Baby, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| |
Collapse
|
4
|
Bertozzi S, Corradetti B, Seriau L, Diaz Ñañez JA, Cedolini C, Fruscalzo A, Cesselli D, Cagnacci A, Londero AP. Nanotechnologies in Obstetrics and Cancer during Pregnancy: A Narrative Review. J Pers Med 2022; 12:jpm12081324. [PMID: 36013273 PMCID: PMC9410527 DOI: 10.3390/jpm12081324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Nanotechnology, the art of engineering structures on a molecular level, offers the opportunity to implement new strategies for the diagnosis and management of pregnancy-related disorders. This review aims to summarize the current state of nanotechnology in obstetrics and cancer in pregnancy, focusing on existing and potential applications, and provides insights on safety and future directions. A systematic and comprehensive literature assessment was performed, querying the following databases: PubMed/Medline, Scopus, and Endbase. The databases were searched from their inception to 22 March 2022. Five independent reviewers screened the items and extracted those which were more pertinent within the scope of this review. Although nanotechnology has been on the bench for many years, most of the studies in obstetrics are preclinical. Ongoing research spans from the development of diagnostic tools, including optimized strategies to selectively confine contrast agents in the maternal bloodstream and approaches to improve diagnostics tests to be used in obstetrics, to the synthesis of innovative delivery nanosystems for therapeutic interventions. Using nanotechnology to achieve spatial and temporal control over the delivery of therapeutic agents (e.g., commonly used drugs, more recently defined formulations, or gene therapy-based approaches) offers significant advantages, including the possibility to target specific cells/tissues of interest (e.g., the maternal bloodstream, uterus wall, or fetal compartment). This characteristic of nanotechnology-driven therapy reduces side effects and the amount of therapeutic agent used. However, nanotoxicology appears to be a significant obstacle to adopting these technologies in clinical therapeutic praxis. Further research is needed in order to improve these techniques, as they have tremendous potential to improve the accuracy of the tests applied in clinical praxis. This review showed the increasing interest in nanotechnology applications in obstetrics disorders and pregnancy-related pathologies to improve the diagnostic algorithms, monitor pregnancy-related diseases, and implement new treatment strategies.
Collapse
Affiliation(s)
- Serena Bertozzi
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Bruna Corradetti
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luca Seriau
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
| | - José Andrés Diaz Ñañez
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Carla Cedolini
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Arrigo Fruscalzo
- Clinic of Obstetrics and Gynecology, University Hospital of Fribourg, 1752 Fribourg, Switzerland
| | - Daniela Cesselli
- Institute of Pathology, DAME, University of Udine, University Hospital of Udine, 33100 Udine, Italy
| | - Angelo Cagnacci
- Academic Unit of Obstetrics and Gynaecology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Ambrogio P. Londero
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
- Academic Unit of Obstetrics and Gynaecology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy
- Correspondence: or
| |
Collapse
|
5
|
Li X, Kodithuwakku SP, Chan RWS, Yeung WSB, Yao Y, Ng EHY, Chiu PCN, Lee CL. Three-dimensional culture models of human endometrium for studying trophoblast-endometrium interaction during implantation. Reprod Biol Endocrinol 2022; 20:120. [PMID: 35964080 PMCID: PMC9375428 DOI: 10.1186/s12958-022-00973-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
During implantation, a symphony of interaction between the trophoblast originated from the trophectoderm of the implanting blastocyst and the endometrium leads to a successful pregnancy. Defective interaction between the trophoblast and endometrium often results in implantation failure, pregnancy loss, and a number of pregnancy complications. Owing to ethical concerns of using in vivo approaches to study human embryo implantation, various in vitro culture models of endometrium were established in the past decade ranging from two-dimensional cell-based to three-dimensional extracellular matrix (ECM)/tissue-based culture systems. Advanced organoid systems have also been established for recapitulation of different cellular components of the maternal-fetal interface, including the endometrial glandular organoids, trophoblast organoids and blastoids. However, there is no single ideal model to study the whole implantation process leaving more research to be done pursuing the establishment of a comprehensive in vitro model that can recapitulate the biology of trophoblast-endometrium interaction during early pregnancy. This would allow us to have better understanding of the physiological and pathological process of trophoblast-endometrium interaction during implantation.
Collapse
Affiliation(s)
- Xintong Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Suranga P Kodithuwakku
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
6
|
Semedo SSL, da Silva Sanfelice RA, Tomiotto-Pellissier F, Silva TF, da Silva Bortoleti BT, de Oliveira GC, de Lion Siervo GEM, Bosqui LR, Lazarin-Bidói D, Conchon-Costa I, de Barros LD, Garcia JL, Nakazato G, Pavanelli WR, Fernandes GSA, da Costa IN. Biogenic silver nanoparticles (AgNp-Bio) restore testosterone levels and increase TNF-α and IL-6 in Leydig cells infected with Toxoplasma gondii. Exp Parasitol 2022; 241:108343. [DOI: 10.1016/j.exppara.2022.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
|
7
|
Romagano MP, Sherman LS, Shadpoor B, El-Far M, Souayah S, Pamarthi SH, Kra J, Hood-Nehra A, Etchegaray JP, Williams SF, Rameshwar P. Aspirin-Mediated Reset of Preeclamptic Placental Stem Cell Transcriptome - Implication for Stabilized Placental Function. Stem Cell Rev Rep 2022; 18:3066-3082. [PMID: 35908144 DOI: 10.1007/s12015-022-10419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific disease, occurring in ~ 2-10% of all pregnancies. PE is associated with increased maternal and perinatal morbidity and mortality, hypertension, proteinuria, disrupted artery remodeling, placental ischemia and reperfusion, and inflammation. The mechanism of PE pathogenesis remains unresolved explaining limited treatment. Aspirin is used to reduce the risk of developing PE. This study investigated aspirin's effect on PE-derived placenta mesenchymal stem cells (P-MSCs). P-MSCs from chorionic membrane (CM), chorionic villi, membranes from the maternal and amniotic regions, and umbilical cord were similar in morphology, phenotype and multipotency. Since CM-derived P-MSCs could undergo long-term passages, the experimental studies were conducted with this source of P-MSCs. Aspirin (1 mM) induced significant functional and transcriptomic changes in PE-derived P-MSCs, similar to healthy P-MSCs. These include cell cycle quiescence, improved angiogenic pathways, and immune suppressor potential. The latter indicated that aspirin could induce an indirect program to mitigate PE-associated inflammation. As a mediator of activating the DNA repair program, aspirin increased p53, and upregulated genes within the basic excision repair pathway. The robust ability for P-MSCs to maintain its function with high dose aspirin contrasted bone marrow (M) MSCs, which differentiated with eventual senescence/aging with 100 fold less aspirin. This difference cautions how data from other MSC sources are extrapolated to evaluate PE pathogenesis. Dysfunction among P-MSCs in PE involves a network of multiple pathways that can be restored to an almost healthy functional P-MSC. The findings could lead to targeted treatment for PE.
Collapse
Affiliation(s)
- Matthew P Romagano
- Department of Obstetrics, Gynecology and Reproductive Health, D-Maternal Fetal Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Lauren S Sherman
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Bobak Shadpoor
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Markos El-Far
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Sami Souayah
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Sri Harika Pamarthi
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Joshua Kra
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ, USA
| | - Anupama Hood-Nehra
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ, USA
| | | | - Shauna F Williams
- Department of Obstetrics, Gynecology and Reproductive Health, D-Maternal Fetal Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
8
|
Chandrasekar V, Singh AV, Maharjan RS, Dakua SP, Balakrishnan S, Dash S, Laux P, Luch A, Singh S, Pradhan M. Perspectives on the Technological Aspects and Biomedical Applications of Virus‐Like Particles/Nanoparticles in Reproductive Biology: Insights on the Medicinal and Toxicological Outlook. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Ajay Vikram Singh
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Romi Singh Maharjan
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | | | | | - Sagnika Dash
- Obstetrics and Gynecology Apollo Clinic Qatar 23656 Doha Qatar
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Suyash Singh
- Department of Neurosurgery All India Institute of Medical Sciences Raebareli UP 226001 India
| | - Mandakini Pradhan
- Department of Fetal Medicine Sanjay Gandhi Post Graduate Institute of Medical Sciences Reabareli Road Lucknow UP 226014 India
| |
Collapse
|
9
|
Lane MKM, Garedew M, Deary EC, Coleman CN, Ahrens-Víquez MM, Erythropel HC, Zimmerman JB, Anastas PT. What to Expect When Expecting in Lab: A Review of Unique Risks and Resources for Pregnant Researchers in the Chemical Laboratory. Chem Res Toxicol 2022; 35:163-198. [PMID: 35130693 PMCID: PMC8864617 DOI: 10.1021/acs.chemrestox.1c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Pregnancy presents a unique risk
to chemical researchers due to
their occupational exposures to chemical, equipment, and physical
hazards in chemical research laboratories across science, engineering,
and technology disciplines. Understanding “risk” as
a function of hazard, exposure, and vulnerability, this review aims
to critically examine the state of the science for the risks and associated
recommendations (or lack thereof) for pregnant researchers in chemical
laboratories (labs). Commonly encountered hazards for pregnant lab
workers include chemical hazards (organic solvents, heavy metals,
engineered nanomaterials, and endocrine disruptors), radiation hazards
(ionizing radiation producing equipment and materials and nonionizing
radiation producing equipment), and other hazards related to the lab
environment (excessive noise, excessive heat, psychosocial stress,
strenuous physical work, and/or abnormal working hours). Lab relevant
doses and routes of exposure in the chemical lab environment along
with literature and governmental recommendations or resources for
exposure mitigation are critically assessed. The specific windows
of vulnerability based on stage of pregnancy are described for each
hazard, if available. Finally, policy gaps for further scientific
research are detailed to enhance future guidance to protect pregnant
lab workers.
Collapse
Affiliation(s)
- Mary Kate M Lane
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mahlet Garedew
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Emma C Deary
- Department of Anthropology, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Cherish N Coleman
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221, United States
| | - Melissa M Ahrens-Víquez
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Paul T Anastas
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States.,School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
10
|
Sharma A, Sah N, Kannan S, Kannan RM. Targeted drug delivery for maternal and perinatal health: Challenges and opportunities. Adv Drug Deliv Rev 2021; 177:113950. [PMID: 34454979 PMCID: PMC8544131 DOI: 10.1016/j.addr.2021.113950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022]
Abstract
Pre-existing conditions at reproductive age, and complications arising during pregnancy can be detrimental to maternal and fetal health. Current therapies to combat obstetric disorders are limited due to the inherent complexity of pregnancy, and can have harmful effects on developing fetus. Emerging research shows intricate signaling between the cells from mother and fetus at maternal-fetal interface, providing unique opportunities for interventions specifically targeted to the mother, fetus, or placenta. Advancements in nanotechnology, stem-cell biology and gene therapy have resulted in target-specific treatments with promising results in pre-clinical maternal and fetal disorder models. Comprehensive understanding of the effect of physicochemical properties of delivery systems on their uptake, retention and accumulation across placenta will help in the better diagnosis and treatment of perinatal disorders. This review describes the factors leading to obstetric complications along with their effect on pregnancy outcomes, and discusses key targeted therapeutic strategies for addressing conditions related to maternal and fetal health.
Collapse
Affiliation(s)
- Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nirnath Sah
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore MD, 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore MD, 21205, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD, 21218, USA.
| |
Collapse
|
11
|
Shojaei S, Ali MS, Suresh M, Upreti T, Mogourian V, Helewa M, Labouta HI. Dynamic placenta-on-a-chip model for fetal risk assessment of nanoparticles intended to treat pregnancy-associated diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166131. [PMID: 33766738 DOI: 10.1016/j.bbadis.2021.166131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Pregnant women often have to take medication either for pregnancy-related diseases or for previously existing medical conditions. Current maternal medications pose fetal risks due to off target accumulation in the fetus. Nanoparticles, engineered particles in the nanometer scale, have been used for targeted drug delivery to the site of action without off-target effects. This has opened new avenues for treatment of pregnancy-associated diseases while minimizing risks on the fetus. It is therefore instrumental to study the potential transfer of nanoparticles from the mother to the fetus. Due to limitations of in vivo and ex vivo models, an in vitro model mimicking the in vivo situation is essential. Placenta-on-a-chip provides a microphysiological recapitulation of the human placenta. Here, we reviewed the fetal risks associated with current therapeutic approaches during pregnancy, analyzed the advantages and limitations of current models used for nanoparticle assessment, and highlighted the current need for using dynamic placenta-on-a-chip models for assessing the safety of novel nanoparticle-based therapies during pregnancy.
Collapse
Affiliation(s)
- Shahla Shojaei
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Moustafa S Ali
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.
| | - Madhumita Suresh
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Tushar Upreti
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Victoria Mogourian
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Michael Helewa
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Canada.
| | - Hagar I Labouta
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Biomedical Engineering, University of Manitoba, Winnipeg, Canada; Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
12
|
Costa IN, Ribeiro M, Silva Franco P, da Silva RJ, de Araújo TE, Milián ICB, Luz LC, Guirelli PM, Nakazato G, Mineo JR, Mineo TWP, Barbosa BF, Ferro EAV. Biogenic Silver Nanoparticles Can Control Toxoplasma gondii Infection in Both Human Trophoblast Cells and Villous Explants. Front Microbiol 2021; 11:623947. [PMID: 33552033 PMCID: PMC7858645 DOI: 10.3389/fmicb.2020.623947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
The combination of sulfadiazine and pyrimethamine plus folinic acid is the conventional treatment for congenital toxoplasmosis. However, this classical treatment presents teratogenic effects and bone marrow suppression. In this sense, new therapeutic strategies are necessary to reduce these effects and improve the control of infection. In this context, biogenic silver nanoparticles (AgNp-Bio) appear as a promising alternative since they have antimicrobial, antiviral, and antiparasitic activity. The purpose of this study to investigate the action of AgNp-Bio in BeWo cells, HTR-8/SVneo cells and villous explants and its effects against Toxoplasma gondii infection. Both cells and villous explants were treated with different concentrations of AgNp-Bio or combination of sulfadiazine + pyrimethamine (SDZ + PYZ) in order to verify the viability. After, cells and villi were infected and treated with AgNp-Bio or SDZ + PYZ in different concentrations to ascertain the parasite proliferation and cytokine production profile. AgNp-Bio treatment did not reduce the cell viability and villous explants. Significant reduction was observed in parasite replication in both cells and villous explants treated with silver nanoparticles and classical treatment. The AgNp-Bio treatment increased of IL-4 and IL-10 by BeWo cells, while HTR8/SVneo cells produced macrophage migration inhibitory factor (MIF) and IL-4. In the presence of T. gondii, the treatment induced high levels of MIF production by BeWo cells and IL-6 by HTR8SV/neo. In villous explants, the AgNp-Bio treatment downregulated production of IL-4, IL-6, and IL-8 after infection. In conclusion, AgNp-Bio can decrease T. gondii infection in trophoblast cells and villous explants. Therefore, this treatment demonstrated the ability to reduce the T. gondii proliferation with induction of inflammatory mediators in the cells and independent of mediators in chorionic villus which we consider the use of AgNp-Bio promising in the treatment of toxoplasmosis in BeWo and HTR8/SVneo cell models and in chorionic villi.
Collapse
Affiliation(s)
- Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Mayara Ribeiro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rafaela José da Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Thádia Evelyn de Araújo
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Iliana Claudia Balga Milián
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luana Carvalho Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Pâmela Mendonça Guirelli
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gerson Nakazato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tiago W. P. Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
13
|
Pereira KV, Giacomeli R, Gomes de Gomes M, Haas SE. The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications. Placenta 2020; 100:75-80. [PMID: 32862059 PMCID: PMC7431318 DOI: 10.1016/j.placenta.2020.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023]
Abstract
During the period of pregnancy, several processes and physiological adaptations occur in the body and metabolism of pregnant woman. These physiological adaptations in pregnant woman end up leading to a suppression in immune system favoring obstetric complications to the mother, fetus and placental tissue. An effective pharmacological therapy for these complications is still a challenge, since some drugs during pregnancy can have deleterious and teratogenic effects. An emerging alternative to pharmacological therapy during pregnancy is drugs encapsulated in nanoparticles (NP), recent area called nano-obstetrics. NP have the advantage of drug targeting and reduction of side effects. Then, maternal, placental or fetal uptake can be expected, depending on the characteristics of NP. Inorganic NP, crossing placental barrier effectively, but have several nanotoxicological effects. While organic NP appear to have a better targeting capacity and have few toxicological effects, but the studies are still scarce. Thus, in this review, were examined questions related to use and impact of physicochemical aspects of inorganic and organic NP during pregnancy.
Collapse
Affiliation(s)
- Kelle Velasques Pereira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima n.1000, 97105-900, Santa Maria, RS, Brazil
| | - Renata Giacomeli
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Marcelo Gomes de Gomes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Sandra Elisa Haas
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima n.1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Figueroa-Espada CG, Hofbauer S, Mitchell MJ, Riley RS. Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy. Adv Drug Deliv Rev 2020; 160:244-261. [PMID: 32956719 DOI: 10.1016/j.addr.2020.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
A major challenge to treating diseases during pregnancy is that small molecule therapeutics are transported through the placenta and incur toxicities to the developing fetus. The placenta is responsible for providing nutrients, removing waste, and protecting the fetus from toxic substances. Thus, the placenta acts as a biological barrier between the mother and fetus that can be exploited for drug delivery. Nanoparticle technologies provide the opportunity for safe drug delivery during pregnancy by controlling how therapeutics interact with the placenta. In this Review, we present nanoparticle drug delivery technologies specifically designed to exploit the placenta as a biological barrier to treat maternal, placental, or fetal diseases exclusively, while minimizing off-target toxicities. Further, we discuss opportunities, challenges, and future directions for implementing drug delivery technologies during pregnancy.
Collapse
|
15
|
Abstract
The application of nanotechnology, molecular biotechnologies, and nano-sciences for medical purposes has been termed nanomedicine, a promising growing area of medical research. The aim of this paper is to provide an overview of and discuss nanotechnology applications in the early epochs of life, from transplacental transfer to neonatal/pediatric conditions. Diagnostic and therapeutic applications, mainly related to the respiratory tract, the neurosensory system, and infections, are explored and discussed. Preclinical studies show promising results for a variety of conditions, including for the treatment of pregnancy complications and fetal, neonatal, and pediatric diseases. However, given the complexity of the functions and interactions between the placenta and the fetus, and the complex and incompletely understood determinants of tissue growth and differentiation during early life, there is a need for much more data to confirm the safety and efficacy of nanotechnology in this field.
Collapse
|
16
|
State-of-the-Art and Prospective of Nanotechnologies for Smart Reproductive Management of Farm Animals. Animals (Basel) 2020; 10:ani10050840. [PMID: 32414174 PMCID: PMC7278443 DOI: 10.3390/ani10050840] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Many biotechnological assisted reproductive techniques (ART) are currently used to control the reproductive processes of farm animals. Nowadays, smart ART that considers technique efficiency, animal welfare, cost efficiency and environmental health are developed. Recently, the nanotechnology revolution has pervaded all scientific fields including the reproduction of farm animals, facilitating certain improvements in this field. Nanotechnology could be used to improve and overcome many technical obstacles that face different ART. For example, semen purification and semen preservation processes have been developed using different nanomaterials and techniques, to obtain semen doses with high sperm quality. Additionally, nanodrugs delivery could be applied to fabricate several sex hormones (steroids or gonadotrophins) used in the manipulation of the reproductive cycle. Nanofabricated hormones have new specific biological properties, increasing their bioavailability. Applying nanodrugs delivery techniques allow a reduction in hormone dose and improves hormone kinetics in animal body, because of protection from natural biological barriers (e.g., enzymatic degradation). Additionally, biodegradable nanomaterials could be used to fabricate hormone-loaded devices that are made from non-degradable materials, such as silicon and polyvinyl chloride-based matrixes, which negatively impact environmental health. This review discusses the role of nanotechnology in developing some ART outcomes applied in the livestock sector, meeting the concept of smart production.
Collapse
|