1
|
Shen K, Xia L, Gao X, Li C, Sun P, Liu Y, Fan H, Li X, Han L, Lu C, Jiao K, Xia C, Wang Z, Deng B, Pan F, Sun T. Tobacco as bioenergy and medical plant for biofuels and bioproduction. Heliyon 2024; 10:e33920. [PMID: 39055830 PMCID: PMC11269859 DOI: 10.1016/j.heliyon.2024.e33920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco, a widely cultivated crop, has been extensively utilized by humans for an extended period. However, the tobacco industry generates a significant amount of organic waste, and the effective utilization of this tobacco waste has been limited. Currently, most tobacco waste is either recycled as reconstituted tobacco sheets or disposed of in landfills. However, tobacco possesses far more potential value than just these applications. This article provides an overview of the diverse uses of tobacco waste in agriculture, medicine, chemical engineering, and energy sectors. In the realm of agriculture, tobacco waste finds primary application as fertilizers and pesticides. In medical applications, the bioactive compounds present in tobacco are fully harnessed, resulting in the production of phenols, solanesol, polysaccharides, proteins, and even alkaloids. These bioactive compounds exhibit beneficial effects on human health. Additionally, the applications of tobacco waste in chemical engineering and energy sectors are centered around the utilization of lignocellulosic compounds and certain fuels. Chemical platform compounds derived from tobacco waste, as well as selected fuel sources, play a significant role in these areas. The rational utilization of tobacco waste represents a promising prospect, particularly in the present era when sustainable development is widely advocated. Moreover, this approach holds significant importance for enhancing energy utilization.
Collapse
Affiliation(s)
- Kai Shen
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Liwei Xia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaoyuan Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Cuiyu Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ping Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yikuan Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Hu Fan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Xu Li
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Leyuan Han
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Chengfei Lu
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Kaixuan Jiao
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Chen Xia
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Zhi Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Bin Deng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Tulai Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
2
|
Jakimiuk K, Szoka Ł, Surażyński A, Tomczyk M. Using Flavonoid Substitution Status to Predict Anticancer Effects in Human Melanoma Cancers: An In Vitro Study. Cancers (Basel) 2024; 16:487. [PMID: 38339241 PMCID: PMC10854695 DOI: 10.3390/cancers16030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Skin cancers are a dominant type of cancer that impacts millions per year. Cancer is a heterogeneous disease triggered by the irreversible impairment of cellular homeostasis and function. In this study, we investigated the activity of 37 structurally diverse flavonoids to find potentially active substances using two melanoma cell lines: C32 and A375. First, the cytotoxic potential and DNA biosynthesis inhibition of flavonoids were tested to determine the most active compounds in cancer and normal cells. Second, the molecular mechanism of the anticancer activity of flavonoids was elucidated using Western blot and immunofluorescence analyses. Compounds 1, 6, 15, and 37 reduced the viability of A375 and C32 cell lines via the intrinsic and extrinsic pathways of apoptosis, whereas 16 and 17 acted in a higher degree via the inhibition of DNA biosynthesis. In our experiment, we demonstrated the anticancer activity of compound 15 (5,6-dihydroxyflavone) for the first time. The in vitro studies pointed out the importance of the flavonoid core in hydroxyl groups in the search for potential drugs for amelanotic melanoma.
Collapse
Affiliation(s)
- Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland;
| | - Łukasz Szoka
- Department of Medicinal Chemistry, Euroregional Center of Pharmacy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2d, 15-222 Białystok, Poland; (Ł.S.); (A.S.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Euroregional Center of Pharmacy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2d, 15-222 Białystok, Poland; (Ł.S.); (A.S.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland;
| |
Collapse
|
3
|
Bioactivity, Molecular Mechanism, and Targeted Delivery of Flavonoids for Bone Loss. Nutrients 2023; 15:nu15040919. [PMID: 36839278 PMCID: PMC9960663 DOI: 10.3390/nu15040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Skeletal disabilities are a prominent burden on the present population with an increasing life span. Advances in osteopathy have provided various medical support for bone-related diseases, including pharmacological and prosthesis interventions. However, therapeutics and post-surgery complications are often reported due to side effects associated with modern-day therapies. Thus, therapies utilizing natural means with fewer toxic or other side effects are the key to acceptable interventions. Flavonoids constitute a class of bioactive compounds found in dietary supplements, and their pharmacological attributes have been well appreciated. Recently, flavonoids' role is gaining renowned interest for its effect on bone remodeling. A wide range of flavonoids has been found to play a pivotal role in the major bone signaling pathways, such as wingless-related integration site (Wnt)/β-catenin, bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β, mitogen-activated protein kinase (MAPK), etc. However, the reduced bioavailability and the absorption of flavonoids are the major limitations inhibiting their use against bone-related complications. Recent utilization of nanotechnological approaches and other delivery methods (biomaterial scaffolds, micelles) to target and control release can enhance the absorption and bioavailability of flavonoids. Thus, we have tried to recapitulate the understanding of the role of flavonoids in regulating signaling mechanisms affecting bone remodeling and various delivery methods utilized to enhance their therapeutical potential in treating bone loss.
Collapse
|
4
|
Liu J, Song L, Zhou J, Yu M, Hu Y, Zhang J, Song P, Ye Y, Wang J, Feng G, Guo H, An P. Prediction of Prognosis of Tongue Squamous Cell Carcinoma Based on Clinical MR Imaging Data Modeling. Technol Cancer Res Treat 2023; 22:15330338231207006. [PMID: 37872687 PMCID: PMC10594972 DOI: 10.1177/15330338231207006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Objective: Tongue squamous cell carcinoma (TSCC) is one of the most common and poor prognosis head and neck tumors. The purpose of this study is to establish a model for predicting TSCC prognosis based on clinical and MR radiomics data and to develop a nomogram. Methods: A retrospective analysis was performed on the clinical and imaging data of 211 patients with pathologically confirmed TSCC who underwent radical surgery at xx hospital from February 2011 to January 2020. Patients were divided into a study group (recurrence, metastasis, and death, n = 76) and a control group (normal survival, n = 135) according to 1 to 6 years of follow-up. A training set and a test set were established based on a ratio of 7:3 and a time point. In the training set, 3 prediction models (clinical data model, imaging model, and combined model) were established based on the MR radiomics score (Radscore) combined with clinical features. The predictive performance of these models was compared using the Delong curve, and the clinical net benefit of the model was tested using the decision curve. Then, the external validation of the model was performed in the test set, and a nomogram for predicting TSCC prognosis was developed. Results: Univariate analysis confirmed that betel nut consumption, spicy hot pot or pickled food, unclean oral sex, drug use, platelet/lymphocyte ratio (PLR), neutrophil/lymphocyte ratio (NLR), depth of invasion (DOI), low differentiation, clinical stage, and Radscore were factors that affected TSCC prognosis (P < .05). In the test set, the combined model based on these factors had the highest predictive performance for TSCC prognosis (area under curve (AUC) AUC: 0.870, 95% CI [0.761-0.942]), which was significantly higher than the clinical model (AUC: 0.730, 95% CI [0.602-0.835], P = .033) and imaging model (AUC: 0.765, 95% CI [0.640-0.863], P = .074). The decision curve also confirmed the higher clinical net benefit of the combined model, and these results were validated in the test set. The nomogram developed based on the combined model received good evaluation in clinical application. Conclusion: MR-LASSO extracted texture parameters can help improve the performance of TSCC prognosis models. The combined model and nomogram provide support for postoperative clinical treatment management of TSCC.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Lina Song
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jingran Zhou
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Mengxing Yu
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan Hu
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Junyan Zhang
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Ping Song
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yingjian Ye
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Gynaecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jinsong Wang
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Gynaecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Guoyan Feng
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Hongyan Guo
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Peng An
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Gynaecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
5
|
Takashima H, Tagami T, Kato S, Pae H, Ozeki T, Shibuya Y. Three-Dimensional Printing of an Apigenin-Loaded Mucoadhesive Film for Tailored Therapy to Oral Leukoplakia and the Chemopreventive Effect on a Rat Model of Oral Carcinogenesis. Pharmaceutics 2022; 14:pharmaceutics14081575. [PMID: 36015201 PMCID: PMC9415331 DOI: 10.3390/pharmaceutics14081575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Oral leukoplakia, which presents as white lesions in the oral cavity, including on the tongue, is precancerous in nature. Conservative treatment is preferable, since surgical removal can markedly reduce the patient’s quality of life. In the present study, we focused on the flavonoid apigenin as a potential compound for preventing carcinogenesis, and an apigenin-loaded mucoadhesive oral film was prepared using a three-dimensional (3D) bioprinter (semi-solid extrusion-type 3D printer). Apigenin-loaded printer inks are composed of pharmaceutical excipients (HPMC, CARBOPOL, and Poloxamer), water, and ethanol to dissolve apigenin, and the appropriate viscosity of printer ink after adjusting the ratios allowed for the successful 3D printing of the film. After drying the 3D-printed object, the resulting film was characterized. The chemopreventive effect of the apigenin-loaded film was evaluated using an experimental rat model that had been exposed to 4-nitroquinoline 1-oxide (4NQO) to induce oral carcinogenesis. Treatment with the apigenin-loaded film showed a remarkable chemopreventive effect based on an analysis of the specimen by immunohistostaining. These results suggest that the apigenin-loaded mucoadhesive film may help prevent carcinogenesis. This successful preparation of apigenin-loaded films by a 3D printer provides useful information for automatically fabricating other tailored films (with individual doses and shapes) for patients with oral leukoplakia in a future clinical setting.
Collapse
Affiliation(s)
- Hiroyuki Takashima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-ku, Nagoya 467-0001, Japan; (H.T.); (S.K.)
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (T.T.); (H.P.); (T.O.)
| | - Shinichiro Kato
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-ku, Nagoya 467-0001, Japan; (H.T.); (S.K.)
| | - Heeju Pae
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (T.T.); (H.P.); (T.O.)
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (T.T.); (H.P.); (T.O.)
| | - Yasuyuki Shibuya
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-ku, Nagoya 467-0001, Japan; (H.T.); (S.K.)
- Correspondence: ; Tel.: +81-52-858-7302
| |
Collapse
|
6
|
New Polymethoxyflavones from Hottonia palustris Evoke DNA Biosynthesis-Inhibitory Activity in An Oral Squamous Carcinoma (SCC-25) Cell Line. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144415. [PMID: 35889288 PMCID: PMC9325269 DOI: 10.3390/molecules27144415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Four new compounds, 5-hydroxy-2′,6′-dimethoxyflavone (4), 5-hydroxy-2′,3′,6′-trimethoxyflavone (5), 5-dihydroxy-6-methoxyflavone (6), and 5,6′-dihydroxy-2′,3′-dimethoxyflavone (7), and three known compounds, 1,3-diphenylpropane-1,3-dione (1), 5-hydroxyflavone (2), and 5-hydroxy-2′-methoxyflavone (3), were isolated from the aerial parts of Hottonia palustris. Their chemical structures were determined through the use of spectral, spectroscopic and crystallographic methods. The quantitative analysis of the compounds (1–7) and the zapotin (ZAP) in methanol (HP1), petroleum (HP6), and two chloroform extracts (HP7 and HP8) were also determined using HPLC-PDA. The biological activity of these compounds and extracts on the oral squamous carcinoma cell (SCC-25) line was investigated by considering their cytotoxic effects using the MTT assay. Subsequently, the most active compounds and extracts were assessed for their effect on DNA biosynthesis. It was found that all tested samples during 48 h treatment of SCC-25 cells induced the DNA biosynthesis-inhibitory activity: compound 1 (IC50, 29.10 ± 1.45 µM), compound 7 (IC50, 40.60 ± 1.65 µM) and extracts ZAP (IC50, 20.33 ± 1.01 µM), HP6 (IC50, 14.90 ± 0.74 µg), HP7 (IC50, 16.70 ± 0.83 µg), and HP1 (IC50, 30.30 ± 1.15 µg). The data suggest that the novel polymethoxyflavones isolated from Hottonia palustris evoke potent DNA biosynthesis inhibitory activity that may be considered in further studies on experimental pharmacotherapy of oral squamous cell carcinoma.
Collapse
|
7
|
Fazli B, Irani S, Bardania H, Moosavi MS, Rohani B. Prophylactic effect of topical (slow-release) and systemic curcumin nano-niosome antioxidant on oral cancer in rat. BMC Complement Med Ther 2022; 22:109. [PMID: 35440035 PMCID: PMC9020014 DOI: 10.1186/s12906-022-03590-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral malignancies have a significant effect on the quality of life among the affected patients. Curcumin is an antioxidant with a low bioavailability in the target tissue. Niosomes are carriers of increasing the therapeutic effects of drugs and reducing their side effects. This study aimed to determine the effective dose of curcumin niosome in the culture and then to compare its prophylactic effect in the form of mouthwash with that of its injectable form on oral cancer in rats. METHODS This was an in-vitro and in-vivo study. Firstly, KB oral cancer cells and human umbilical vein endothelial cells (HUVEC) were treated in separate groups with free curcumin, curcumin-loaded niosomes, and the unloaded niosomes at four doses of 4, 8, 16, and 32 μg. The study rats were then divided into the following four groups: 1) no intervention, 2) only carcinogenic substance, 3) carcinogenic substance with curcumin-loaded niosome injection, and 4) carcinogenic substance with a mouthwash containing niosome. RESULTS At the cellular level, a dose of 16 μg after 24 h was selected as an effective dose. In the animal phase, the use of injectable curcumin niosome was observed to significantly prevent the development of severe forms of dysplasia. CONCLUSIONS In this in-vitro and in-vivo study, curcumin-loaded niosome was effective in preventing the development of severe forms of dysplasia and the inhibition of the growth of cancer cells.
Collapse
Affiliation(s)
- Behzad Fazli
- Student Research Committee, Faculty of Dentistry, Aja University of Medical Sciences, Tehran, Iran
| | - Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran.,Lecturer at Pathology Department of Faculty of Medicine, Griffith University, Gold Coast, Australia
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdieh-Sadat Moosavi
- Dental Research Center, Dentistry Research Institute, Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Rohani
- Department of Oral Medicine, Faculty of Dentistry, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Proanthocyanidins Should Be a Candidate in the Treatment of Cancer, Cardiovascular Diseases and Lipid Metabolic Disorder. Molecules 2020; 25:molecules25245971. [PMID: 33339407 PMCID: PMC7766935 DOI: 10.3390/molecules25245971] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The conventional view of using medicines as routine treatment of an intractable disease is being challenged in the face of extensive and growing evidence that flavonoids in foods, especially proanthocyanidins (PAs), can participate in tackling fatal diseases like cancer, cardiovascular and lipid metabolic diseases, both as a precautionary measure or as a dietary treatment. Although medical treatment with medicines will remain necessary in some cases, at least in the short term, PAs’ function as antioxidant, anti-inflammatory drugs, signal pathway regulators remain critical in many diseases. This review article demonstrates the physical and biological properties of PAs, summarizes the health benefits of PAs found by researchers previously, and shows the possibility and importance of being a dietary treatment substance.
Collapse
|
9
|
Franconi R, Massa S, Paolini F, Vici P, Venuti A. Plant-Derived Natural Compounds in Genetic Vaccination and Therapy for HPV-Associated Cancers. Cancers (Basel) 2020; 12:cancers12113101. [PMID: 33114220 PMCID: PMC7690868 DOI: 10.3390/cancers12113101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary DNA vaccination represents a useful approach for human papillomavirus (HPV) cancer therapy. The therapeutic potential of plant-based natural compounds for control of HPV- associated cancers has been also widely explored. Genetic vaccines for HPV-associated tumors that include plant protein-encoding gene sequences, used alone or in combinations with plant metabolites, are being investigated but are still in their infancy. Main focus of this paper is to provide an overview of the current state of novel therapeutic strategies employing genetic vaccines along with plant-derived compounds and genes. We highlight the importance of multimodality treatment regimen such as combining immunotherapy with plant-derived agents. Abstract Antigen-specific immunotherapy and, in particular, DNA vaccination provides an established approach for tackling human papillomavirus (HPV) cancers at different stages. DNA vaccines are stable and have a cost-effective production. Their intrinsic low immunogenicity has been improved by several strategies with some success, including fusion of HPV antigens with plant gene sequences. Another approach for the control of HPV cancers is the use of natural immunomodulatory agents like those derived from plants, that are able to interfere in carcinogenesis by modulating many different cellular pathways and, in some instances, to reduce chemo- and radiotherapy resistance of tumors. Indeed, plant-derived compounds represent, in many cases, an abundantly available, cost-effective source of molecules that can be either harvested directly in nature or obtained from plant cell cultures. In this review, an overview of the most relevant data reported in literature on the use of plant natural compounds and genetic vaccines that include plant-derived sequences against HPV tumors is provided. The purpose is also to highlight the still under-explored potential of multimodal treatments implying DNA vaccination along with plant-derived agents.
Collapse
Affiliation(s)
- Rosella Franconi
- Division of Health Protection Technology, Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Silvia Massa
- Division of Biotechnology and Agroindustry, Department for Sustainability, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Francesca Paolini
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Patrizia Vici
- Division of Medical Oncology B, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Aldo Venuti
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
10
|
Wine Consumption and Oral Cavity Cancer: Friend or Foe, Two Faces of Janus. Molecules 2020; 25:molecules25112569. [PMID: 32486484 PMCID: PMC7321235 DOI: 10.3390/molecules25112569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
The health benefits of moderate wine consumption have been extensively studied during the last few decades. Some studies have demonstrated protective associations between moderate drinking and several diseases including oral cavity cancer (OCC). However, due to the various adverse effects related to ethanol content, the recommendation of moderate wine consumption has been controversial. The polyphenolic components of wine contribute to its beneficial effects with different biological pathways, including antioxidant, lipid regulating and anti-inflammatory effects. On the other hand, in the oral cavity, ethanol is oxidized to form acetaldehyde, a metabolite with genotoxic properties. This review is a critical compilation of both the beneficial and the detrimental effects of wine consumption on OCC.
Collapse
|