1
|
Guo H, Hu Z, Yang X, Yuan Z, Wang M, Chen C, Xie L, Gao Y, Li W, Bai Y, Lin C. Smad4 regulates TGF-β1-mediated hedgehog activation to promote epithelial-to-mesenchymal transition in pancreatic cancer cells by suppressing Gli1 activity. Comput Struct Biotechnol J 2024; 23:1189-1200. [PMID: 38525105 PMCID: PMC10957521 DOI: 10.1016/j.csbj.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive and metastatic gastrointestinal tumor with a poor prognosis. Persistent activation of the TGF-β/Smad signaling induces PC cell (PCC) invasion and infiltration via epithelial-to-mesenchymal transition (EMT). Hedgehog signaling is a crucial pathway for the development of PC via the transcription factors Gli1/2/3. This study aimed to investigate the underlying molecular mechanisms of action of hedgehog activation in TGF-β1-triggered EMT in PCCs (PANC-1 and BxPc-3). In addition, overexpression and shRNA techniques were used to evaluate the role of Smad4 in TGF-β1-treated PCCs. Our data showed that TGF-β1 promoted PCC invasion and infiltration via Smad2/3-dependent EMT. Hedgehog-Gli signaling axis in PCCs was activated upon TGF-β1 stimulation. Inhibition of hedgehog with cyclopamine effectively antagonized TGF-β1-induced EMT, thereby suggesting that the hedgehog signaling may act as a downstream cascade signaling of TGF-β1. As a key protein that assists the nuclear translocation of Smad2/3, Smad4 was highly expressed in PANC-1 cells, but not in BxPc-3 cells. Conversely, Gli1 expression was low in PANC-1 cells, but high in BxPc-3 cells. Furthermore, knockdown of Smad4 in PANC-1 cells by shRNA inhibited TGF-β1-mediated EMT and collagen deposition. Overexpression of Smad4 did not affect TGF-β1-mediated EMT due to the lack of significant increase in nuclear expression of Smad4. Importantly, Gli1 activity was upregulated by Smad4 knockdown in PANC-1 cells and downregulated by Smad4 overexpression in BxPc-3 cells, indicating that Gli1 may be a negative target protein downstream of Smad4. Thus, Smad4 regulates TGF-β1-mediated hedgehog activation to promote EMT in PCCs by suppressing Gli1 activity.
Collapse
Affiliation(s)
- Hangcheng Guo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Sichuan Mianyang 404 Hospital, Mianyang 621000, China
| | - Zujian Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xuejia Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Ziwei Yuan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Mengsi Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Chaoyue Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Lili Xie
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yuanyuan Gao
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Wangjian Li
- Department of Urology, The Central Hospital Affiliated to Shaoxing University, Shaoxing 312030, China
| | - Yongheng Bai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chunjing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Medicine and Health Care Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
2
|
Wang D, Yin L, Chen R, Tan W, Liang L, Xiang J, Zhang H, Zhou X, Deng H, Guo B, Wang Y. Senescent renal tubular epithelial cells activate fibroblasts by secreting Shh to promote the progression of diabetic kidney disease. Front Med (Lausanne) 2023; 9:1018298. [PMID: 36760880 PMCID: PMC9905119 DOI: 10.3389/fmed.2022.1018298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/08/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Diabetic kidney disease (DKD) is one of the complications of diabetes; however, the pathogenesis is not yet clear. A recent study has shown that senescence is associated with the course of DKD. In the present study, we explored whether senescent renal tubular cells promote renal tubulointerstitial fibrosis by secreting Sonic hedgehog (Shh) which mediates fibroblast activation and proliferation in DKD. Methods A 36-week-old db/db mice model and the renal tubular epithelial cells were cultured in high glucose (HG, 60 mmol/L) medium for in vivo and in vitro experiments. Results Compared to db/m mice, blood glucose, microalbuminuria, serum creatinine, urea nitrogen, and UACR (microalbuminuria/urine creatinine) were markedly increased in db/db mice. Collagen III, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-α) were also increased in db/db mice kidneys, suggesting fibrosis and inflammation in the organ. Moreover, the detection of SA-β-galactosidase (SA-β-Gal) showed that the activity of SA-β-Gal in the cytoplasm of renal tubular epithelial cells increased, and the cell cycle inhibition of the expression of senescence-related gene cell cycle inhibitor p16 INK4A protein and p21 protein increased, indicating that renal fibrosis in db/db mice was accompanied by cell senescence. Furthermore, Shh is highly expressed in the injured renal tubules and in the kidney tissue of db/db mice, as detected by enzyme-linked immunosorbent assay (ELISA). The results of immunofluorescence staining showed increased positive staining for Shh in renal tubular epithelial cells of db/db mice and decreased positive staining for Lamin B1, but increased positive staining for γH2A.X in cells with high Shh expression; similar results were obtained in vitro. In addition, HG stimulated renal tubular epithelial cells to secrete Shh in the supernatant of the medium. D-gal treatment of renal tubular epithelial cells increased the protein levels of Shh and p21. We also found enhanced activation and proliferation of fibroblasts cultured with the supernatant of renal tubular epithelial cells stimulated by HG medium but the proliferative effect was significantly diminished when co-cultured with cyclopamine (CPN), an inhibitor of the Shh pathway. Discussion In conclusion, HG induces renal tubular epithelial cell senescence, and the secretion of senescence-associated proteins and Shh mediates inflammatory responses and fibroblast activation and proliferation, ultimately leading to renal fibrosis.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China,International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, China
| | - Ling Yin
- Division of Nephrology, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rongyu Chen
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wanlin Tan
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Luqun Liang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiayi Xiang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huifang Zhang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xingcheng Zhou
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huaqing Deng
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Guo
- Guizhou Province Innovation Base of Common Major Chronic Disease Pathogenesis and Drug Development and Application, Guiyang, Guizhou, China,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Bing Guo, ; orcid.org/0000-0001-8998-2597
| | - Yuanyuan Wang
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, China,Guizhou Province Innovation Base of Common Major Chronic Disease Pathogenesis and Drug Development and Application, Guiyang, Guizhou, China,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China,Yuanyuan Wang, ; orcid.org/0000-0002-6693-643X
| |
Collapse
|
3
|
Liu B, Zhao S, Liu L. PKNOX1 acts as a transcription factor of DHH and promotes the progression of stomach adenocarcinoma by regulating the Hedgehog signalling pathway. Int J Immunopathol Pharmacol 2023; 37:3946320231208833. [PMID: 37864517 PMCID: PMC10591495 DOI: 10.1177/03946320231208833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND This study explored the effects and potential mechanism by which PBX/knotted 1 homeobox 1 (PKNOX1) may exacerbate stomach adenocarcinoma (STAD). METHODS For the in silico analysis, we examined TCGA-PKNOX1 expression using the UALCAN website, as well as its expression patterns in the GSE172032 and GSE174237 datasets, obtained from the GEO database. The associated patient survival curves, were analysed via the KMplot webtool. In vitro, we measured cell viability, proliferation, migration, and invasion using cell counting kit-8, colony formation, wound healing, and cell migration assays, respectively. Real time qPCR and western blotting assessed the mRNA and protein levels of PKNOX1, Snail, vimentin, N-cadherin, E-cadherin, desert hedgehog (DHH), cyclin D2, glioma-associated oncogene homolog 1, and smoothened. Gene Set Enrichment Analysis was performed using LinkedOmics webtools and the clusterProfiler package in R. Dual-luciferase reporter assay was used to examine the interactions of PKNOX1 with DHH, and of TEA domain transcription factor 4 (TEAD4) with PKNOX1. RESULTS PKNOX1 was highly expressed in STAD and linked to poor patient survival. Downregulation of PKNOX1 inhibited STAD cell viability, proliferation, migration, invasion, and epithelial-mesenchymal transition. Upregulation of TEAD4 promoted colony formation and migration, while these effects were reversed by PKNOX1 depletion. Furthermore, PKNOX1 regulated the activation of the hedgehog signalling pathway at the gene level, as we identified PKNOX1 to be a putative transcription factor for DHH that promotes its expression. CONCLUSION Our results show that PKNOX1 acts as a candidate transcription factor for DHH and facilitates STAD development by regulating the hedgehog signalling pathway.
Collapse
Affiliation(s)
- Bing Liu
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Cancer Hospital, Jinan, P. R. China
| | - Siwei Zhao
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Cancer Hospital, Jinan, P. R. China
| | - Liqing Liu
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Cancer Hospital, Jinan, P. R. China
| |
Collapse
|
4
|
Shi L, Gao X, Bi Y, Li M, Sun H, Tian X, Bi W. Gli ko BMSC: A potential strategy of treatment for renal fibrosis. Regen Ther 2022; 20:157-164. [PMID: 35620638 PMCID: PMC9111922 DOI: 10.1016/j.reth.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022] Open
Abstract
Objective There are many researches on using bone marrow mesenchymal stem cells (BMSCs) in the treatment of acute kidney injury (AKI), which has certain effects, but the mechanism of action is still unclear. Previous researches show that glioma-associated oncogene homolog 1 (Gli 1) can promote the proliferation and migration of cells, which can also promote renal fibrosis. Therefore, we investigate the influence of Gli-regulated BMSCs on repairing AKI and renal fibrosis induced by limb Ischemia-Reperfusion (I/R). Methods The Crispr-Cas9 technique was adopted to knock out the Gli1 gene from the mouse BMSCs according to green fluorescent tracing, and the BMSCs (BMSCs-Gliko) with Gli1 gene knocked out and the BMSCs as control group were obtained. The cell proliferation, apoptosis, cycle and SHH signal pathway gene level were tested. The mice were built to the AKI model with inducing I/R injury, then the BMSCs-Gliko and BMSCs cells were injected into the mice, and their IL-1, IL-1B, TNF-a, serum creatinine (Scr) and blood urea nitrogen (BUN) levels were tested; Western blot was employed to test the expression of α-SMA, SMAD2 and SMAD4 in the renal tissues of mice. Finally, flow cytometry was used to test the content of BMSCs containing green fluorescence in the blood of mice. Results The BMSCs-Gliko containing green fluorescence and the mouse AKI model were built; both BMSCs and BMSCs-Gliko can reduce the damage level, and BMSCs-Gliko outperformed BMSCs in protecting renal tubules and anti-fibrosis. Our study also shows that BMSCs-Gliko stayed longer in the blood of mice, which might also be one of the reasons why BMSCs-Gliko outperformed BMSCs in preventing renal tubules and fibrosis. To sum it up, could be key target of using.
Collapse
Affiliation(s)
- Long Shi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, China
| | - Yue Bi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, China
| | - Meng Li
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, China
| | - Xiaochao Tian
- Department of Cardiology, The Second Hospital of Hebei Medical University, China
| | - Wei Bi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, China
| |
Collapse
|