1
|
Ortega MA, Boaru DL, De Leon-Oliva D, De Castro-Martinez P, Minaya-Bravo AM, Casanova-Martín C, Barrena-Blázquez S, Garcia-Montero C, Fraile-Martinez O, Lopez-Gonzalez L, Saez MA, Alvarez-Mon M, Diaz-Pedrero R. The Impact of Klotho in Cancer: From Development and Progression to Therapeutic Potential. Genes (Basel) 2025; 16:128. [PMID: 40004457 PMCID: PMC11854833 DOI: 10.3390/genes16020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Klotho, initially identified as an anti-aging gene, has been shown to play significant roles in cancer biology. Alongside α-Klotho, the β-Klotho and γ-Klotho isoforms have also been studied; these studies showed that Klotho functions as a potential tumor suppressor in many different cancers by inhibiting cancer cell proliferation, inducing apoptosis and modulating critical signaling pathways such as the Wnt/β-catenin and PI3K/Akt pathways. In cancers such as breast cancer, colorectal cancer, hepatocellular carcinoma, ovarian cancer, and renal cell carcinoma, reduced Klotho expression often correlates with a poor prognosis. In addition, Klotho's role in enhancing chemotherapy sensitivity and its epigenetic regulation further underscores its potential as a target for cancer treatments. This review details Klotho's multifaceted contributions to cancer suppression and its potential as a therapeutic target, enhancing the understanding of its significance in cancer treatment and prognoses.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Ana M. Minaya-Bravo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of General and Digestive Surgery, Príncipe de Asturias, University Hospital, 28805 Alcala de Henares, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of General and Digestive Surgery, Príncipe de Asturias, University Hospital, 28805 Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
2
|
Cabral LGDS, Oliveira CS, Freire KA, Alves MG, Oliveira VX, Poyet JL, Maria DA. Antiproliferative Modulation and Pro-Apoptotic Effect of BR2 Tumor-Penetrating Peptide Formulation 2-Aminoethyl Dihydrogen Phosphate in Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:5342. [PMID: 38001606 PMCID: PMC10670255 DOI: 10.3390/cancers15225342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is the most common cancer in women, the so-called "Triple-Negative Breast Cancer" (TNBC) subtype remaining the most challenging to treat, with low tumor-free survival and poor clinical evolution. Therefore, there is a clear medical need for innovative and more efficient treatment options for TNBC. The aim of the present study was to evaluate the potential therapeutic interest of the association of the tumor-penetrating BR2 peptide with monophosphoester 2-aminoethyl dihydrogen phosphate (2-AEH2P), a monophosphoester involved in cell membrane turnover, in TNBC. For that purpose, viability, migration, proliferative capacity, and gene expression analysis of proteins involved in the control of proliferation and apoptosis were evaluated upon treatment of an array of TNBC cells with the BR2 peptide and 2-AEH2P, either separately or combined. Our data showed that, while possessing limited single-agent activity, the 2-AEH2P+BR2 association promoted significant cytotoxicity in TNBC cells but not in normal cells, with reduced proliferative potential and inhibition of cell migration. Mechanically, the 2-AEH2P+BR2 combination promoted an increase in cells expressing p53 caspase 3 and caspase 8, a reduction in cells expressing tumor progression and metastasis markers such as VEGF and PCNA, as well as a reduction in mitochondrial electrical potential. Our results indicate that the combination of the BR2 peptide with 2-AEH2P+BR2 may represent a promising therapeutic strategy in TNBC with potential use in clinical settings.
Collapse
Affiliation(s)
- Laertty Garcia de Sousa Cabral
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 69310-000, Brazil; (L.G.d.S.C.); (M.G.A.)
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 01246-903, Brazil
| | - Cyntia Silva Oliveira
- Federal University of Sao Paulo (UNIFESP), Sao Paulo 09913-030, Brazil; (C.S.O.); (V.X.O.)
| | | | - Monique Gonçalves Alves
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 69310-000, Brazil; (L.G.d.S.C.); (M.G.A.)
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 01246-903, Brazil
| | - Vani Xavier Oliveira
- Federal University of Sao Paulo (UNIFESP), Sao Paulo 09913-030, Brazil; (C.S.O.); (V.X.O.)
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09210-580, Brazil;
| | - Jean-Luc Poyet
- INSERM UMRS976, Institut De Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Durvanei Augusto Maria
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 69310-000, Brazil; (L.G.d.S.C.); (M.G.A.)
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 01246-903, Brazil
| |
Collapse
|
3
|
Mota J, Lima AMM, Gomes JIS, Souza de Andrade M, Brito HO, Silva MMAL, Faustino-Rocha AI, Oliveira PA, Lopes FF, Gil da Costa RM. Klotho in Cancer: Potential Diagnostic and Prognostic Applications. Diagnostics (Basel) 2023; 13:3357. [PMID: 37958253 PMCID: PMC10650206 DOI: 10.3390/diagnostics13213357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Klotho proteins, αKlotho, βKlotho, and γKlotho, exert tumor-suppressive activities via the fibroblast growth factor receptors and multiple cell-signaling pathways. There is a growing interest in Klotho proteins as potential diagnostic and prognostic biomarkers for multiple diseases. However, recent advances regarding their roles and potential applications in cancer remain disperse and require an integrated analysis. The present review analyzed research articles published between 2012 and 2022 in the Cochrane and Scopus scientific databases to study the role of Klotho in cancer and their potential as tools for diagnosing specific cancer types, predicting tumor aggressiveness and prognosis. Twenty-six articles were selected, dealing with acute myeloid leukemia and with bladder, breast, colorectal, esophageal, gastric, hepatocellular, ovarian, pancreatic, prostatic, pulmonary, renal, and thyroid cancers. αKlotho was consistently associated with improved prognosis and may be useful in estimating patient survival. A single study reported the use of soluble αKlotho levels in blood serum as a tool to aid the diagnosis of esophageal cancer. γKlotho was associated with increased aggressiveness of bladder, breast, and prostate cancer, and βKlotho showed mixed results. Further clinical development of Klotho-based assays will require careful identification of specific tumor subtypes where Klotho proteins may be most valuable as diagnostic or prognostic tools.
Collapse
Affiliation(s)
- Jucileide Mota
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
| | - Alice Marques Moreira Lima
- Health Sciences Center, State University of the Tocantins Region of Maranhão (UEMASUL), Imperatriz 6591-480, Brazil
| | - Jhessica I. S. Gomes
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
| | - Marcelo Souza de Andrade
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
| | - Haissa O. Brito
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
- Morphology Department, Federal University of Maranhão, São Luís 65085-580, Brazil
| | | | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Fernanda F. Lopes
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
| | - Rui M. Gil da Costa
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering (ALiCE), University of Porto, 4200-465 Porto, Portugal
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Health Research Network, Research Center of Portuguese Oncology Institute of Porto (CIIPOP/RISE@CIIPOP), 4200-072 Porto, Portugal
| |
Collapse
|
4
|
Sadeghi F, Kajbaf M, Shafiee F. BR2, a Buforin Derived Cancer Specific Cell Penetrating Peptide for Targeted Delivering of Toxic Agents: a Review Article. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Zabolian A, Hashemi M, Hushmandi K, Ashrafizadeh M, Aref AR, Samarghandian S. Cervical cancer progression is regulated by SOX transcription factors: Revealing signaling networks and therapeutic strategies. Biomed Pharmacother 2021; 144:112335. [PMID: 34700233 DOI: 10.1016/j.biopha.2021.112335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth common gynecologic cancer and is considered as second leading cause of death among women. Various strategies are applied in treatment of cervical cancer including radiotherapy, chemotherapy and surgery. However, cervical cancer cells demonstrate aggressive behavior in advanced phases, requiring novel strategies in their elimination. On the other hand, SOX proteins are transcription factors capable of regulating different molecular pathways and their expression varies during embryogenesis, disease development and carcinogenesis. In the present review, our aim is to reveal role of SOX transcription factors in cervical cancer. SOX transcription factors play like a double-edged sword in cancer. For instance, SOX9 possesses both tumor-suppressor and tumor-promoting role in cervical cancer. Therefore, exact role of each SOX members in cervical cancer has been discussed to direct further experiments for revealing other functions. SOX proteins can regulate proliferation and metastasis of cervical cancer cells. Furthermore, response of cervical cancer cells to chemotherapy and radiotherapy is tightly regulated by SOX transcription factors. Different downstream targets of SOX proteins such as Wnt signaling, EMT and Hedgehog have been identified. Besides, upstream mediators such as microRNAs, lncRNAs and circRNAs can regulate SOX expression in cervical cancer. In addition to pre-clinical studies, role of SOX transcription factors as prognostic and diagnostic tools in cervical cancer has been shown.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Wang XH, Zhang SF, Wu HY, Gao J, Wang XH, Gao TH. SOX17 inhibits proliferation and invasion of neuroblastoma through CXCL12/CXCR4 signaling axis. Cell Signal 2021; 87:110093. [PMID: 34302955 DOI: 10.1016/j.cellsig.2021.110093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
SOX17 has been shown to be involved in the transcriptional regulation of CXCR4, and CXCL12 functions by binding to its receptor CXCR4. Here, we explored the expression of SOX17 in neuroblastoma (NB), its mutual regulation with CXCL12, and its effects on cancer cell proliferation, migration and invasion. Five human NB cell lines and 15 pairs of NB and adjacent tissue specimens were used, to conduct RT-qPCR, immunohistochemistry, western blot, ELISA, CCK-8, colony formation, Edu, transwell, chromatin immunoprecipitation (ChIP), and dual-luciferase assays, to study the role of SOX17 in NB. SOX17 levels were reduced in both NB tissues and cell lines. SOX17 inhibited NB tumor growth, migration and invasion in vivo and suppressed NB cell proliferation, migration, and invasion in vitro. SOX17 knockdown or overexpression revealed a negative correlation between SOX17 and CXCL12/CXCR4 pathway activation. ChIP and dual-luciferase assays in NB cells demonstrated that SOX17 significantly inhibited CXCL12 gene and protein levels by binding to CXCL12 promoter regions. In vivo and in vitro experiments using the CXCR4 antagonist, AMD3100, demonstrated that cell proliferation, migration and invasion were significantly abrogated by AMD3100 in NB cells with SOX17 knocked down. Further, AMD3100 impaired growth of NB tumors with SOX17 knocked down in mice. Importantly, SOX17 bound to the CXCL12 promoter, which then activated downstream targets to regulate cell viability, proliferation, and migration. In conclusion, our data demonstrate that SOX17 expression is repressed in NB tissues and cells, and that SOX17 suppresses NB tumor formation and proliferation through inhibition of CXCL12/CXCR4 signaling.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, Henan Province, PR China
| | - Shu-Feng Zhang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, Henan Province, PR China.
| | - Hai-Ying Wu
- Obstetrical Department, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, Henan Province, PR China
| | - Jian Gao
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, Henan Province, PR China
| | - Xu-Hui Wang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, Henan Province, PR China
| | - Tian-Hui Gao
- Medical Oncology, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, Henan Province, PR China
| |
Collapse
|
7
|
The role of SOX family transcription factors in gastric cancer. Int J Biol Macromol 2021; 180:608-624. [PMID: 33662423 DOI: 10.1016/j.ijbiomac.2021.02.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
Gastric cancer (GC) is a leading cause of death worldwide. GC is the third-most common cause of cancer-related death after lung and colorectal cancer. It is also the fifth-most commonly diagnosed cancer. Accumulating evidence has revealed the role of signaling networks in GC progression. Identification of these molecular pathways can provide new insight into therapeutic approaches for GC. Several molecular factors involved in GC can play both onco-suppressor and oncogene roles. Sex-determining region Y (Sry)-box-containing (SOX) family members are transcription factors with a well-known role in cancer. SOX proteins can bind to DNA to regulate cellular pathways via a highly conserved domain known as high mobility group (HMG). In the present review, the roles of SOX proteins in the progression and/or inhibition of GC are discussed. The dual role of SOX proteins as tumor-promoting and tumor-suppressing factors is highlighted. SOX members can affect upstream mediators (microRNAs, long non-coding RNAs and NF-κB) and down-stream mediators (FAK, HIF-1α, CDX2 and PTEN) in GC. The possible role of anti-tumor compounds to target SOX pathway members in GC therapy is described. Moreover, SOX proteins may be used as diagnostic or prognostic biomarkers in GC.
Collapse
|
8
|
Ewendt F, Feger M, Föller M. Role of Fibroblast Growth Factor 23 (FGF23) and αKlotho in Cancer. Front Cell Dev Biol 2021; 8:601006. [PMID: 33520985 PMCID: PMC7841205 DOI: 10.3389/fcell.2020.601006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Together with fibroblast growth factors (FGFs) 19 and 21, FGF23 is an endocrine member of the family of FGFs. Mainly secreted by bone cells, FGF23 acts as a hormone on the kidney, stimulating phosphate excretion and suppressing formation of 1,25(OH)2D3, active vitamin D. These effects are dependent on transmembrane protein αKlotho, which enhances the binding affinity of FGF23 for FGF receptors (FGFR). Locally produced FGF23 in other tissues including liver or heart exerts further paracrine effects without involvement of αKlotho. Soluble Klotho (sKL) is an endocrine factor that is cleaved off of transmembrane Klotho or generated by alternative splicing and regulates membrane channels, transporters, and intracellular signaling including insulin growth factor 1 (IGF-1) and Wnt pathways, signaling cascades highly relevant for tumor progression. In mice, lack of FGF23 or αKlotho results in derangement of phosphate metabolism and a syndrome of rapid aging with abnormalities affecting most organs and a very short life span. Conversely, overexpression of anti-aging factor αKlotho results in a profound elongation of life span. Accumulating evidence suggests a major role of αKlotho as a tumor suppressor, at least in part by inhibiting IGF-1 and Wnt/β-catenin signaling. Hence, in many malignancies, higher αKlotho expression or activity is associated with a more favorable outcome. Moreover, also FGF23 and phosphate have been revealed to be factors relevant in cancer. FGF23 is particularly significant for those forms of cancer primarily affecting bone (e.g., multiple myeloma) or characterized by bone metastasis. This review summarizes the current knowledge of the significance of FGF23 and αKlotho for tumor cell signaling, biology, and clinically relevant parameters in different forms of cancer.
Collapse
Affiliation(s)
- Franz Ewendt
- Department of Nutritional Physiology, Institute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|