1
|
Karaman EF, Abudayyak M, Guler ZR, Bektas S, Kaptan E, Ozden S. The effects of fumonisin B1 on intercellular communications and miRNA modulations: Non-genotoxic carcinogenesis mechanisms in human kidney cells. Toxicology 2024; 509:153968. [PMID: 39414224 DOI: 10.1016/j.tox.2024.153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Fumonisin B1 (FB1), which is produced by Fusarium species, is one of the most prevalent mycotoxins known to exert several toxic effects, particularly nephrotoxicity. While its genotoxic carcinogenic mechanisms have been extensively studied, its influence on non-genotoxic pathways including intercellular communication and microRNA (miRNA) regulation remain underexplored. The present study investigates the effects of FB1 on gap junctions, miRNA expression profiles, and their relationship in human kidney cells (HK-2 and HEK293). Both cell lines showed increased apoptosis rates at 50 and 100 µM, while FB1 exposure significantly reduced gap junctional intercellular communication (GJIC) and decreased the expression levels of related genes, including Cx43, Cx45, e-cadherin, Cadherin-2, and β-catenin. After FB1 treatments alteration on the regulation of miRNAs including let-7a-5p, miR-125a-5p, miR-222-3p, miR-92a-3p, let-7b-5p, let-7e-5p, miR-21-5p, miR-155-5p, let-7i-5p, let-7d-5p, let-7f-5p, miR-181b-5p, miR-15b-5p, miR-23b-3p, miR-20b-5p, miR-196a-5p miRNAs have been shown. Let-7a-5p was selected among the altered miRNAs to elucidate the relationship between miRNAs and GJIC after FB1 exposure as it is one of the common miRNAs that changes in both cell lines and one of its target genes is Cx45, which is an important gene for GJIC. However, transfection analysis did not show any differences, resulting in Cx45 not being a direct target of let-7a-5p in HK-2 and HEK-293 cells. Through comprehensive analysis, we elucidated that FB1's impact on intercellular signaling cascades and its regulatory role on miRNA expression profiles, offering valuable insights into carcinogenesis beyond traditional genotoxic paradigms. Understanding these mechanisms is crucial for elucidating the mechanisms of FB1-induced toxicity.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Topkapi, Istanbul 34015, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey
| | - Zeynep Rana Guler
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Engin Kaptan
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey.
| |
Collapse
|
2
|
Bai H, Li Z, Weng Y, Cui F, Chen W. Integrated analysis of single-cell RNA-seq and bulk RNA-seq revealed key genes for bone metastasis and chemoresistance in prostate cancer. Genes Genomics 2024:10.1007/s13258-024-01575-x. [PMID: 39395905 DOI: 10.1007/s13258-024-01575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a serious malignancy. The main causes of PCa aggravation and death are unexplained resistance to chemotherapy and bone metastases. OBJECTIVE This study aimed to investigate the molecular mechanisms associated with the dynamic processes of progression, bone metastasis, and chemoresistance in PCa. METHODS Through comprehensive analysis of single-cell RNA sequencing (scRNA-seq) data, Gene Expression Omnibus (GEO) tumor progression and metastasis-related genes were identified. These genes were subjected to lasso regression modeling using the Cancer Genome Atlas (TCGA) database. Tartrate-resistant acid phosphatase (TRAP) staining and real-time quantitative PCR (RT-qPCR) were used to evaluate osteoclast differentiation. CellMiner was used to confirm the effect of LDHA on chemoresistance. Finally, the relationship between LDHA and chemoresistance was verified using doxorubicin-resistant PCa cell lines. RESULTS 7928 genes were identified as genes related to tumor progression and metastasis. Of these, 7 genes were found to be associated with PCa prognosis. The scRNA-seq and TCGA data showed that the expression of LDHA was higher in tumors and associated with poor prognosis of PCa. In addition, upregulation of LDHA in PCa cells induces osteoclast differentiation. Additionally, high LDHA expression was associated with resistance to Epirubicin, Elliptinium acetate, and doxorubicin. Cellular experiments demonstrated that LDHA knockdown inhibited doxorubicin resistance in PCa cells. CONCLUSIONS LDHA may play a potential contributory role in PCa initiation and development, bone metastasis, and chemoresistance. LDHA is a key target for the treatment of PCa.
Collapse
Affiliation(s)
- Hongai Bai
- Clinical Trial Department, Wenzhou Central Hospital, Wenzhou, People's Republic of China
| | - Zhenyue Li
- Pharmacy Department, Wenzhou Central Hospital, Wenzhou, People's Republic of China
| | - Yueyue Weng
- Pharmacy Department, Wenzhou Central Hospital, Wenzhou, People's Republic of China
| | - Facai Cui
- Department of Clinical Laboratory, Henan provincial people's hospital, The people's hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wenpu Chen
- Urology Surgery, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Tavsanli N, Erözden AA, Çalışkan M. Evaluation of small-molecule modulators of the circadian clock: promising therapeutic approach to cancer. Mol Biol Rep 2024; 51:848. [PMID: 39046562 DOI: 10.1007/s11033-024-09813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024]
Abstract
The circadian clock is an important regulator of human homeostasis. Circadian rhythms are closely related to cell fate because they are necessary for regulating the cell cycle, cellular proliferation, and apoptosis. Clock dysfunction can result in the development of diseases such as cancer. Although certain tumors have been shown to have a malfunctioning clock, which may affect prognosis or treatment, this has been postulated but not proven in many types of cancer. Recently, important information has emerged about the basic characteristics that underpin the overt circadian rhythm and its influence on physiological outputs. This information implies that the circadian rhythm may be managed by using particular small molecules. Small-molecule clock modulators target clock components or different physiological pathways that influence the clock. Identifying new small-molecule modulators will improve our understanding of critical regulatory nodes in the circadian network and cancer. Pharmacological manipulation of the clock may be valuable for treating cancer. The discoveries of small-molecule clock modulators and their possible application in cancer treatment are examined in this review.
Collapse
Affiliation(s)
- Nalan Tavsanli
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
- Program of Biotechnology, Biology Department, Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Ahmet Arıhan Erözden
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
- Program of Biotechnology, Biology Department, Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Mahmut Çalışkan
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey.
| |
Collapse
|
4
|
Alsaab HO, Alzahrani MS, F Alaqile A, Waggas DS, Almutairy B. Long non-coding RNAs; potential contributors in cancer chemoresistance through modulating diverse molecular mechanisms and signaling pathways. Pathol Res Pract 2024; 260:155455. [PMID: 39043005 DOI: 10.1016/j.prp.2024.155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
One of the mainstays of cancer treatment is chemotherapy. Drug resistance, however, continues to be the primary factor behind clinical treatment failure. Gene expression is regulated by long non-coding RNAs (lncRNAs) in several ways, including chromatin remodeling, translation, epigenetic, and transcriptional levels. Cancer hallmarks such as DNA damage, metastasis, immunological evasion, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis are all influenced by LncRNAs. Numerous studies have been conducted on LncRNA-driven mechanisms of resistance to different antineoplastic drugs. Diverse medication kinds elicit diverse resistance mechanisms, and each mechanism may have multiple contributing factors. As a result, several lncRNAs have been identified as new biomarkers and therapeutic targets for identifying and managing cancers. This compels us to thoroughly outline the crucial roles that lncRNAs play in drug resistance. In this regard, this article provides an in-depth analysis of the recently discovered functions of lncRNAs in the pathogenesis and chemoresistance of cancer. As a result, the current research might offer a substantial foundation for future drug resistance-conquering strategies that target lncRNAs in cancer therapies.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Atheer F Alaqile
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dania S Waggas
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
5
|
Fu XP, Ji CY, Tang WQ, Yu TT, Luo L. Long non-coding RNA LOXL1-AS1: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2024; 24:93. [PMID: 38693424 PMCID: PMC11062969 DOI: 10.1007/s10238-024-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides. Despite their inability to code proteins, multiple studies have identified their important role in human cancer through different mechanisms. LncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1), a newly discovered lncRNA located on human chromosome 15q24.1, has recently been shown to be involved in the occurrence and progression of various malignancies, such as colorectal cancer, gastric cancer, hepatocellular carcinoma, prostate cancer, non-small cell lung cancer, ovarian cancer, cervical cancer, breast cancer, glioma, thymic carcinoma, pancreatic carcinoma. LOXL1-AS1 acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-374b-5p, miR-21, miR-423-5p, miR-589-5p, miR-28-5p, miR-324-3p, miR-708-5p, miR-143-3p, miR-18b-5p, miR-761, miR-525-5p, miR-541-3p, miR-let-7a-5p, miR-3128, miR-3614-5p, miR-377-3p and miR-1224-5p to promote tumor cell proliferation, invasion, migration, apoptosis, cell cycle, and epithelial-mesenchymal transformation (EMT). In addition, LOXL1-AS1 is involved in the regulation of P13K/AKT and MAPK signaling pathways. This article reviews the current understanding of the biological function and clinical significance of LOXL1-AS1 in human cancers. These findings suggest that LOXL1-AS1 may be both a reliable biomarker and a potential therapeutic target for cancers.
Collapse
Affiliation(s)
- Xiao-Ping Fu
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China
| | - Chun-Yan Ji
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese and Western Medicine, Wuhan, 430015, People's Republic of China
| | - Wen-Qian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China
| | - Ting-Ting Yu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, 443000, People's Republic of China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
6
|
Verma M, Fatima S, Saeed M, Ansari IA. Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells. Mol Biotechnol 2024:10.1007/s12033-024-01089-7. [PMID: 38502429 DOI: 10.1007/s12033-024-01089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/26/2024] [Indexed: 03/21/2024]
Abstract
Prostate cancer incidences are rising worldwide at an alarming rate. Drug resistance and relapse are two major challenges in the treatment of prostate cancer. Therefore, new multimodal, safe, and effective therapeutic agents are urgently required which could effectively mitigate the menace of tumor recurrence and chemo-resistance. Plant-derived products are increasingly being utilized due to their antioxidant, antibacterial, and anti-tumor potential. In the current study, 3-acetyl-11-keto-β-boswellic acid, a triterpenoid isolated from plant Boswellia, was utilized to ascertain its chemotherapeutic potential against human prostate cancer cells. Various in vitro assays including cell viability, nuclear staining, mitochondria potential, reactive oxygen species (ROS) generation, and quantification of apoptosis, were performed for the evaluation of the cytotoxic potential of AKBA. We observed that AKBA (10-50 µM) dose-dependently suppressed cell proliferation and caused programmed cell death in PC3 cells via both intrinsic and extrinsic pathway. Intriguingly, AKBA was also found to chemosensitize PC3 cells in synergistic combination with doxorubicin. To the best of our knowledge, this is the first study to document the synergistic chemosensitizing impact of AKBA when combined with doxorubicin in prostate cancer cells.This showcases the potential of AKBA in combinatorial therapy or adjuvant therapy for the management of prostate cancer. In sum, our results suggested that AKBA is a promising drug-like molecule against prostate cancer. Our investigation introduces a novel perspective, elucidating a previously unexplored dimension, and uncovering a compelling chemosensitizing phenomenon along with a strong synergistic effect arising from the concurrent application of these two agents.
Collapse
Affiliation(s)
- Mahima Verma
- Department of Biosciences, Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, India
| | - Shireen Fatima
- Department of Biosciences, Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | | |
Collapse
|
7
|
Mirzaei S, Paskeh MDA, Moghadam FA, Entezari M, Koohpar ZK, Hejazi ES, Rezaei S, Kakavand A, Aboutalebi M, Zandieh MA, Rajabi R, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. miRNAs as short non-coding RNAs in regulating doxorubicin resistance. J Cell Commun Signal 2023:10.1007/s12079-023-00789-0. [PMID: 38019354 DOI: 10.1007/s12079-023-00789-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farhad Adhami Moghadam
- Department of Ophthalmology, Fauclty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Moreira-Silva F, Henrique R, Jerónimo C. From Therapy Resistance to Targeted Therapies in Prostate Cancer. Front Oncol 2022; 12:877379. [PMID: 35686097 PMCID: PMC9170957 DOI: 10.3389/fonc.2022.877379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men worldwide. Although early-stage disease is curable, advanced stage PCa is mostly incurable and eventually becomes resistant to standard therapeutic options. Different genetic and epigenetic alterations are associated with the development of therapy resistant PCa, with specific players being particularly involved in this process. Therefore, identification and targeting of these molecules with selective inhibitors might result in anti-tumoral effects. Herein, we describe the mechanisms underlying therapy resistance in PCa, focusing on the most relevant molecules, aiming to enlighten the current state of targeted therapies in PCa. We suggest that selective drug targeting, either alone or in combination with standard treatment options, might improve therapeutic sensitivity of resistant PCa. Moreover, an individualized analysis of tumor biology in each PCa patient might improve treatment selection and therapeutic response, enabling better disease management.
Collapse
Affiliation(s)
- Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
10
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
11
|
Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Mannelli LDC, Racchi M, Govoni S, Lanni C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther 2022; 7:41. [PMID: 35136018 PMCID: PMC8825842 DOI: 10.1038/s41392-022-00899-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The term “circadian rhythms” describes endogenous oscillations with ca. 24-h period associated with the earth’s daily rotation and light/dark cycle. Such rhythms reflect the existence of an intrinsic circadian clock that temporally orchestrates physiological processes to adapt the internal environment with the external cues. At the molecular level, the circadian clock consists of multiple sets of transcription factors resulting in autoregulatory transcription-translation feedback loops. Notably, in addition to their primary role as generator of circadian rhythm, the biological clock plays a key role in controlling physiological functions of almost all tissues and organs. It regulates several intracellular signaling pathways, ranging from cell proliferation, DNA damage repair and response, angiogenesis, metabolic and redox homeostasis, to inflammatory and immune response. In this review, we summarize findings showing the crosstalk between the circadian molecular clock and some key intracellular pathways, describing a scenario wherein their reciprocal regulation impinges upon several aspects of mammalian physiology. Moreover, based on evidence indicating that circadian rhythms can be challenged by environmental factors, social behaviors, as well as pre-existing pathological conditions, we discuss implications of circadian misalignment in human pathologies, such as cancer and inflammatory diseases. Accordingly, disruption of circadian rhythm has been reported to affect several physiological processes that are relevant to human diseases. Expanding our understanding of this field represents an intriguing and transversal medicine challenge in order to establish a circadian precision medicine.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy.,New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy.,New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristina Travelli
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Davide Voltan
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | | | - Marco Racchi
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy.
| |
Collapse
|
12
|
Zou H, Yang N, Zhang X, Chen HW. RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging therapeutic target in cancer and autoimmune diseases. Biochem Pharmacol 2021; 196:114725. [PMID: 34384758 DOI: 10.1016/j.bcp.2021.114725] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Aberrant cholesterol metabolism and homeostasis in the form of elevated cholesterol biosynthesis and dysregulated efflux and metabolism is well recognized as a major feature of metabolic reprogramming in solid tumors. Recent studies have emphasized on major drivers and regulators such as Myc, mutant p53, SREBP2, LXRs and oncogenic signaling pathways that play crucial roles in tumor cholesterol metabolic reprogramming. Therapeutics such as statins targeting the mevalonate pathway were tried at the clinic without showing consistent benefits to cancer patients. Nuclear receptors are prominent regulators of mammalian metabolism. Their de-regulation often drives tumorigenesis. RORγ and its immune cell-specific isoform RORγt play important functions in control of mammalian metabolism, circadian rhythm and immune responses. Although RORγ, together with its closely related members RORα and RORβ were identified initially as orphan receptors, recent studies strongly support the conclusion that specific intermediates and metabolites of cholesterol pathways serve as endogenous ligands of RORγ. More recent studies also reveal a critical role of RORγ in tumorigenesis through major oncogenic pathways including acting a new master-like regulator of tumor cholesterol biosynthesis program. Importantly, an increasing number of RORγ orthosteric and allosteric ligands are being identified that display potent activities in blocking tumor growth and autoimmune disorders in preclinical models. This review summarizes the recent preclinical and clinical progress on RORγ with emphasis on its role in reprogramming tumor cholesterol metabolism and its regulation. It will also discuss RORγ functional mechanisms, context-specificity and its value as a therapeutic target for effective cancer treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Nianxin Yang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA; UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA; VA Northern California Health Care System, Mather, California, USA.
| |
Collapse
|
13
|
Ding L, Wang R, Shen D, Cheng S, Wang H, Lu Z, Zheng Q, Wang L, Xia L, Li G. Role of noncoding RNA in drug resistance of prostate cancer. Cell Death Dis 2021; 12:590. [PMID: 34103477 PMCID: PMC8187453 DOI: 10.1038/s41419-021-03854-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the most prevalent forms of cancer around the world. Androgen-deprivation treatment and chemotherapy are the curative approaches used to suppress prostate cancer progression. However, drug resistance is extensively and hard to overcome even though remarkable progress has been made in recent decades. Noncoding RNAs, such as miRNAs, lncRNAs, and circRNAs, are a group of cellular RNAs which participate in various cellular processes and diseases. Recently, accumulating evidence has highlighted the vital role of non-coding RNA in the development of drug resistance in prostate cancer. In this review, we summarize the important roles of these three classes of noncoding RNA in drug resistance and the potential therapeutic applications in this disease.
Collapse
Affiliation(s)
- Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Ma H, Kang J, Fan W, He H, Huang F. ROR: Nuclear Receptor for Melatonin or Not? Molecules 2021; 26:molecules26092693. [PMID: 34064466 PMCID: PMC8124216 DOI: 10.3390/molecules26092693] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Whether the retinoic acid-related orphan receptor (ROR) is a nuclear receptor of melatonin remains controversial. ROR is inextricably linked to melatonin in terms of its expression, function, and mechanism of action. Additionally, studies have illustrated that melatonin functions analogous to ROR ligands, thereby modulating the transcriptional activity of ROR. However, studies supporting these interactions have since been withdrawn. Furthermore, recent crystallographic evidence does not support the view that ROR is a nuclear receptor of melatonin. Some other studies have proposed that melatonin indirectly regulates ROR activity rather than directly binding to ROR. This review aims to delve into the complex relationship of the ROR receptor with melatonin in terms of its structure, expression, function, and mechanism. Thus, we provide the latest evidence and views on direct binding as well as indirect regulation of ROR by melatonin, dissecting both viewpoints in-depth to provide a more comprehensive perspective on this issue.
Collapse
Affiliation(s)
- Haozhen Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Jun Kang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| |
Collapse
|
15
|
Zhu J, Qin P, Cao C, Dai G, Xu L, Yang D. Use of miR‑145 and testicular nuclear receptor 4 inhibition to reduce chemoresistance to docetaxel in prostate cancer. Oncol Rep 2021; 45:963-974. [PMID: 33650661 PMCID: PMC7859919 DOI: 10.3892/or.2021.7925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022] Open
Abstract
The human testicular nuclear receptor 4 (TR4) is a critical regulatory gene for the progression of prostate cancer (PCa). Although it has been revealed that TR4 causes chemoresistance in PCa via the activation of octamer-binding transcription factor 4 (OCT4), the detailed mechanism remains unexplored. In the present study, it was revealed that inhibition of TR4 by shRNA in PCa enhanced the sensitivity to docetaxel in vitro and in vivo. TR4 induced the downregulation of miR-145 by directly binding it to the promoter of miR-145, which was confirmed by chromatin immunoprecipitation analysis and luciferase assay. The overexpression of miR-145 suppressed both the chemoresistance and the expression of OCT4 mRNA and protein. Additionally, the TR4 shRNA mediated re-sensitization to docetaxel, along with the downregulated expression of OCT4, were reversed by the concurrent inhibition of miR-145. The luciferase assay revealed that the activity of the wild-type OCT4 3′ untranslated region reporter was suppressed. This suppression diminished when the miR-145 response element mutated. These findings suggest an undescribed regulatory pathway in PCa, by which TR4 directly suppressed the expression of miR-145, thereby inhibiting its direct target OCT4, leading to the promotion of chemoresistance in PCa.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Peibo Qin
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, P.R. China
| | - Cheng Cao
- Department of Urology, The First People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Guangcheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lijun Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|