1
|
Moglad E, Elekhnawy E, Alanazi N, Al-Fakhrany OM. Repurposing simvastatin for treatment of Klebsiella pneumoniae infections: in vitro and in vivo study. BIOFOULING 2024:1-15. [PMID: 39390775 DOI: 10.1080/08927014.2024.2413652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Simvastatin had minimum inhibitory concentrations of 32 to 128 µg/mL against Klebsiella pneumoniae isolates and hindered the biofilm-formation ability of 58.54% of the isolates. It considerably diminished the bacterial cell counts in the biofilms as revealed by scanning electron microscope. Also, qRT-PCR revealed a downregulation of the biofilm genes (bcsA, wza, and luxS) by simvastatin in 48.78% of the isolates. Moreover, simvastatin has significantly improved the survival of mice and decreased the burden of bacteria in the infected lungs. Also, the histological architecture was substantially improved in the simvastatin-treated group, as the alveolar sacs and bronchioles appeared normal with minimal collagen fiber deposition. The immunohistochemical studies exposed that the TNF-α, NF-kβ, and COX-2 immunostaining considerably declined in the simvastatin-treated group. Furthermore, ELISA exposed that both IL-1β and IL-6 were considerably diminished in the lungs of the simvastatin-treated group.
Collapse
Affiliation(s)
- Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nuor Alanazi
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | | |
Collapse
|
2
|
Connection between Osteoarthritis and Nitric Oxide: From Pathophysiology to Therapeutic Target. Molecules 2023; 28:molecules28041683. [PMID: 36838671 PMCID: PMC9959782 DOI: 10.3390/molecules28041683] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Osteoarthritis (OA), a disabling joint inflammatory disease, is characterized by the progressive destruction of cartilage, subchondral bone remodeling, and chronic synovitis. Due to the prolongation of the human lifespan, OA has become a serious public health problem that deserves wide attention. The development of OA is related to numerous factors. Among the factors, nitric oxide (NO) plays a key role in mediating this process. NO is a small gaseous molecule that is widely distributed in the human body, and its synthesis is dependent on NO synthase (NOS). NO plays an important role in various physiological processes such as the regulation of blood volume and nerve conduction. Notably, NO acts as a double-edged sword in inflammatory diseases. Recent studies have shown that NO and its redox derivatives might be closely related to both normal and pathophysiological joint conditions. They can play vital roles as normal bone cell-conditioning agents for osteoclasts, osteoblasts, and chondrocytes. Moreover, they can also induce cartilage catabolism and cell apoptosis. Based on different conditions, the NO/NOS system can act as an anti-inflammatory or pro-inflammatory agent for OA. This review summarizes the studies related to the effects of NO on all normal and OA joints as well as the possible new treatment strategies targeting the NO/NOS system.
Collapse
|
3
|
Dong L, Wen S, Tang Y, Li F, He Y, Deng Y, Tao Z. Atorvastatin attenuates allergic inflammation by blocking prostaglandin biosynthesis in rats with allergic rhinitis. Int Immunopharmacol 2023; 115:109681. [PMID: 36634416 DOI: 10.1016/j.intimp.2023.109681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prostaglandins (PGs) are bioactive lipid mediators derived from the nuclear and plasma membranes via the cyclooxygenase (COX) pathway of arachidonic acid (AA) metabolism. PGs bridge the interactions between various immunomodulatory cells in allergic rhinitis (AR) and are considered key players in regulating pro-inflammatory and anti-inflammatory responses. AA conversion to PGs involves rate-limiting enzymes that may be blocked by statins. The mechanisms by which statins regulate these enzymes in AR remain unclear. We investigated the effects of oral atorvastatin on PGs production in AR. METHODS An ovalbumin-induced AR rat model was constructed and the changes in nasal symptom score and nasal mucosa histopathological characteristics of AR rats under different atorvastatin doses were assessed. qRT-PCR, western blotting, and immunofluorescence were used to detect the mRNA and protein expression levels of rate-limiting enzymes and downstream molecules of AA metabolism in the nasal mucosa and liver. RESULTS Oral atorvastatin significantly alleviated symptoms and eosinophil infiltration in the nasal mucosa, inhibited goblet cell hyperplasia and mast cell recruitment, and decreased mucus secretion in AR rats. Increasing atorvastatin dose increased the anti-inflammatory effects. High-dose atorvastatin inhibited upregulation of the inflammatory mediator PGD2 in the nasal mucosa of AR rats. Compared to the control group, the mRNA and protein expression of the rate-limiting enzymes COX-2, PGDS, and PGES in AA metabolism in the AR group were upregulated but downregulated after the oral administration of high-dose atorvastatin. Atorvastatin also showed dose-dependent inhibition of ERK1/2 and downstream NF-κB phosphorylation in the nasal mucosa and liver of AR rats. CONCLUSIONS Atorvastatin inhibited allergic inflammation and attenuated AR nasal symptoms by downregulating PGD2 and rate-limiting enzyme expression in PGD2 biosynthesis, possibly by blocking the RAS/ERK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Dong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Silu Wen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yulei Tang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yan He
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
4
|
Tong Z, Yang X, Li J. Research progress on the mechanism of interleukin-1β on epiphyseal plate chondrocytes. Eur J Med Res 2022; 27:313. [PMID: 36575508 PMCID: PMC9793524 DOI: 10.1186/s40001-022-00893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/08/2022] [Indexed: 12/28/2022] Open
Abstract
Epiphyseal plate injury, a common problem in pediatric orthopedics, may result in poor bone repair or growth defects. Epiphyseal plate, also known as growth plate is a layer of hyaline cartilage tissue between the epiphysis and metaphyseal and has the ability to grow longitudinally. Under normal physiological conditions, the epiphyseal plate has a certain axial resistance to stress, but it is fragile in growth phase and can be damaged by excessive stress, leading to detachment or avulsion of the epiphysis, resulting in life-long devastating consequences for patients. There is an obvious inflammatory response in the phase of growth plate injury, the limited physiological inflammatory response locally favors tissue repair and the organism, but uncontrolled chronic inflammation always leads to tissue destruction and disease progression. Interleukin-1β (IL-1β), as representative inflammatory factors, not only affect the inflammatory phase response to bone and soft tissue injury, but have a potentially important role in the later repair phase, though the exact mechanism is not fully understood. At present, epiphyseal plate injuries are mainly treated by corrective and reconstructive surgery, which is highly invasive with limited effectiveness, thus new therapeutic approaches are urgently needed, so a deeper understanding and exploration of the pathological mechanisms of epiphyseal plate injuries at the cellular molecular level is an entry point. In this review, we fully introduced the key role of IL-1 in the progression of epiphyseal plate injury and repair, deeply explored the mechanism of IL-1 on the molecular transcript level and endocrine metabolism of chondrocytes from multiple aspects, and summarized other possible mechanisms to provide theoretical basis for the clinical treatment and in-depth study of epiphyseal plate injury in children.
Collapse
Affiliation(s)
- Ziyuan Tong
- grid.412467.20000 0004 1806 3501Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 114000 Liaoning China
| | - Xu Yang
- grid.412467.20000 0004 1806 3501Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 114000 Liaoning China
| | - Jianjun Li
- grid.412467.20000 0004 1806 3501Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 114000 Liaoning China ,grid.412467.20000 0004 1806 3501Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 114000 Liaoning China
| |
Collapse
|
5
|
Hsu CC, Tsai CC, Ko PY, Kwan TH, Liu MY, Wu PT, Jou IM. Triptolide Attenuates Muscular Inflammation and Oxidative Stress in a Delayed-Onset Muscle Soreness Animal Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16685. [PMID: 36554566 PMCID: PMC9778903 DOI: 10.3390/ijerph192416685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Delayed-onset muscle soreness (DOMS) is associated with exercise-induced muscle damage and inflammation, which is mainly caused by prolonged eccentric exercise in humans. Triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, has been used for treating autoimmune and inflammatory diseases in clinical practice. However, whether triptolide attenuates acute muscle damage is still unclear. Here, we examined the effect of triptolide on carrageenan-induced DOMS in rats. Rats were injected with 3% of carrageenan into their muscles to induce acute left gastrocnemius muscular damage, and triptolide treatment attenuated carrageenan-induced acute muscular damage without affecting hepatic function. Triptolide can significantly decrease lipid hydroperoxide and nitric oxide (NO) levels, proinflammatory cytokine production, and the activation of nuclear factor (NF)-ĸB, as well as increase a reduced form of glutathione levels in carrageenan-treated rat muscles. At the enzyme levels, triptolide reduced the inducible nitric oxide synthase (iNOS) expression and muscular myeloperoxidase (MPO) activity in carrageenan-treated DOMS rats. In conclusion, we show that triptolide can attenuate muscular damage by inhibiting muscular oxidative stress and inflammation in a carrageenan-induced rat DOMS model.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Chin-Chuan Tsai
- Department of Traditional Chinese Medicine, E-Da Dachang Hospital, Kaohsiung 82445, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Po-Yen Ko
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Ting-Hsien Kwan
- Department of Orthopaedics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Po-Ting Wu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 70428, Taiwan
- Department of Orthopaedics, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70428, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - I-Ming Jou
- Department of Orthopaedics, E-Da Hospital, Kaohsiung 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- GEG Orthopedic Clinic, Tainan 74543, Taiwan
| |
Collapse
|
6
|
Wang X, Wang D, Xia P, Cheng K, Wang Q, Wang X, Lin Q, Song J, Chen A, Li X. Ultrasound-targeted simvastatin-loaded microbubble destruction promotes OA cartilage repair by modulating the cholesterol efflux pathway mediated by PPARγ in rabbits. Bone Joint Res 2021; 10:693-703. [PMID: 34666502 PMCID: PMC8559971 DOI: 10.1302/2046-3758.1010.bjr-2021-0162.r3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aims To evaluate the effect of ultrasound-targeted simvastatin-loaded microbubble destruction (UTMDSV) for alleviation of the progression of osteoarthritis (OA) in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ). Methods In vitro, OA chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV), and UTMDSV on alternate days for four weeks. Chondrocytes were also treated with PPARγ inhibitor, PPARγ inhibitor+ UTMDSV, and UTMDSV. The cholesterol efflux rate and triglyceride levels were measured using an assay kit and oil red O staining, respectively. In vivo, the OA rabbits were treated with a single intra-articular injection of UTMD, SV, and UTMDSV every seven days for four weeks. Cartilage histopathology was assessed by safranin-O staining and the Mankin score. Total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) in rabbit knee synovial fluid were detected by enzyme-marker assay. Aggrecan, collagen II, and PPARγ expression levels were analyzed by Western blotting (WB). Results In vitro, UTMDSV significantly increased the cholesterol efflux rate and aggrecan, collagen II, and PPARγ levels in OA chondrocytes; these effects were blocked by the PPARγ inhibitor. In vivo, UTMDSV significantly increased aggrecan, collagen II, PPARγ, and HDL-C levels, while TC levels and Mankin scores were decreased compared with the UTMD, SV, OA, and control groups. Conclusion UTMDSV promotes cartilage extracellular matrix synthesis by modulating the PPARγ-mediated cholesterol efflux pathway in OA rabbits. Cite this article: Bone Joint Res 2021;10(10):693–703.
Collapse
Affiliation(s)
- Xinwei Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Danbi Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Cheng
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoju Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiulong Song
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Anliang Chen
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|